A generalized fractional KN equation hierarchy and its fractional Hamiltonian structure

被引:9
|
作者
Yu, Fajun [1 ]
机构
[1] Shenyang Normal Univ, Coll Maths & Systemat Sci, Shenyang 110034, Peoples R China
关键词
Fractional; KN equation hierarchy; Hamiltonian structure; INTEGRABLE COUPLINGS; SOLITON-EQUATIONS; FORMULATION; CALCULUS; SYSTEMS; MODEL;
D O I
10.1016/j.camwa.2011.04.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalized Hamiltonian structure of the fractional soliton equation hierarchy is presented by using differential forms and exterior derivatives of fractional orders. We construct the generalized fractional trace identity through the Riemann-Liouville fractional derivative. An example of the fractional KN soliton equation hierarchy and Hamiltonian structure is presented, which is a new integrable hierarchy and possesses Hamiltonian structure. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1522 / 1530
页数:9
相关论文
共 50 条
  • [21] PERTURBATION EQUATION OF DLW HIERARCHY AND ITS HAMILTONIAN STRUCTURE
    Zhu Li
    Xiaoshuang Sheng
    Annals of Differential Equations, 2013, 29 (01) : 51 - 55
  • [22] Generalized fractional supertrace identity for Hamiltonian structure of NLS-MKdV hierarchy with self-consistent sources
    Dong, Huan He
    Guo, Bao Yong
    Yin, Bao Shu
    ANALYSIS AND MATHEMATICAL PHYSICS, 2016, 6 (02) : 199 - 209
  • [23] New integrable couplings and Hamiltonian structure of the KN hierarchy and the DLW hierarchy
    Zhang, Yufeng
    Tam, Honwah
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (03) : 524 - 533
  • [24] The Fractional Quadratic-Form Identity and Hamiltonian Structure of an Integrable Coupling of the Fractional Broer-Kaup Hierarchy
    Yue, Chao
    Xia, Tiecheng
    Liu, Guijuan
    Liu, Jianbo
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [25] A generalized BPT hierarchy of soliton equations and its Hamiltonian structure
    Zhang, Yufeng
    Hon, Y. C.
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [26] A HIERARCHY OF NEW DISCRETE INTEGRABLE EQUATION AND ITS HAMILTONIAN STRUCTURE
    Ding HaiyongXu XixiangDept. of Basic Courses
    AppliedMathematics:AJournalofChineseUniversities, 2004, (01) : 51 - 56
  • [27] A hierarchy of new discrete integrable equation and its hamiltonian structure
    Haiyong D.
    Xixiang X.
    Applied Mathematics-A Journal of Chinese Universities, 2004, 19 (1) : 51 - 56
  • [28] On generalized fractional vibration equation
    Dai, Hongzhe
    Zheng, Zhibao
    Wang, Wei
    CHAOS SOLITONS & FRACTALS, 2017, 95 : 48 - 51
  • [29] Lie algebraic structure and generalized Poisson conservation law for fractional generalized Hamiltonian systems
    Luo, Shao-Kai
    Li, Lin
    Xu, Yan-Li
    ACTA MECHANICA, 2014, 225 (09) : 2653 - 2666
  • [30] Lie algebraic structure and generalized Poisson conservation law for fractional generalized Hamiltonian systems
    Shao-Kai Luo
    Lin Li
    Yan-Li Xu
    Acta Mechanica, 2014, 225 : 2653 - 2666