A generalized fractional KN equation hierarchy and its fractional Hamiltonian structure

被引:9
|
作者
Yu, Fajun [1 ]
机构
[1] Shenyang Normal Univ, Coll Maths & Systemat Sci, Shenyang 110034, Peoples R China
关键词
Fractional; KN equation hierarchy; Hamiltonian structure; INTEGRABLE COUPLINGS; SOLITON-EQUATIONS; FORMULATION; CALCULUS; SYSTEMS; MODEL;
D O I
10.1016/j.camwa.2011.04.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalized Hamiltonian structure of the fractional soliton equation hierarchy is presented by using differential forms and exterior derivatives of fractional orders. We construct the generalized fractional trace identity through the Riemann-Liouville fractional derivative. An example of the fractional KN soliton equation hierarchy and Hamiltonian structure is presented, which is a new integrable hierarchy and possesses Hamiltonian structure. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1522 / 1530
页数:9
相关论文
共 50 条