Realizing the Braided Temperley-Lieb-Jones C*-Tensor Categories as Hilbert C*-Modules

被引:2
|
作者
Aaserud, Andreas Naes [1 ]
Evans, David E. [1 ]
机构
[1] Cardiff Univ, Sch Math, Senghennydd Rd, Cardiff CF24 4AG, Wales
基金
英国工程与自然科学研究理事会;
关键词
LOOP-GROUPS; ALGEBRAS; REPRESENTATIONS; LATTICES; SYSTEMS; MODELS;
D O I
10.1007/s00220-020-03729-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We associate to each Temperley-Lieb-Jones C*-tensor category TLJ( d) with parameter d in the discrete range {2 cos(pi/(k + 2)) : k = 1, 2,...}. {2} a certain C*-algebra B of compact operators. We use the unitary braiding on TLJ(delta) to equip the category ModB of (right) Hilbert B-modules with the structure of a braided C*-tensor category. We show that TLJ( d) is equivalent, as a braided C*-tensor category, to the full subcategory Mod fB of ModB whose objects are those modules which admit a finite orthonormal basis. Finally, we indicate how these considerations generalize to arbitrary finitely generated rigid braided C*-tensor categories.
引用
收藏
页码:103 / 130
页数:28
相关论文
共 50 条
  • [21] Standard A-lattices, rigid C* tensor categories, and (bi)modules
    Chen, Quan
    DOCUMENTA MATHEMATICA, 2024, 29 : 247 - 341
  • [22] Tensor Product of Operator-Valued Frames in Hilbert C*-Modules
    Musazadeh, K.
    Khosravi, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2009, 4 (01) : 23 - 29
  • [23] K-theory of AF-algebras from braided C*-tensor categories
    Aaserud, Andreas Naes
    Evans, David Emrys
    REVIEWS IN MATHEMATICAL PHYSICS, 2020, 32 (08)
  • [24] ON ENVELOPING C*-ALGEBRA OF ONE AFFINE TEMPERLEY-LIEB ALGEBRA
    Savchuk, Yurii
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2006, 12 (03): : 296 - 300
  • [25] Hilbert C*-Modules with Hilbert Dual and C*-Fredholm Operators
    Manuilov, Vladimir
    Troitsky, Evgenij
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2023, 95 (03)
  • [26] Graded Hilbert C*-modules
    Wang, Chunxiang
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (02)
  • [27] Quaternion Hilbert C*-modules
    Omran, Saleh
    Ahmedi, A. El-Sayed
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (05) : 810 - 818
  • [28] Frames in Hilbert C*-modules and C*-algebras
    Frank, M
    Larson, DR
    JOURNAL OF OPERATOR THEORY, 2002, 48 (02) : 273 - 314
  • [29] Isometries of hilbert C*-modules
    Solel, B
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (11) : 4637 - 4660
  • [30] Extensions of Hilbert C*-modules
    Bakic, D
    Guljas, B
    HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (02): : 537 - 558