Finite volume schemes for nonhomogeneous scalar conservation laws: error estimate

被引:0
|
作者
Chainais-Hillairet, C
Champier, S
机构
[1] Ecole Normale Super Lyon, UMPA, F-69364 Lyon 7, France
[2] Univ St Etienne, F-42023 St Etienne, France
关键词
D O I
10.1007/PL00005452
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study finite volume schemes for the nonhomogeneous scalar conservation law u(t) + divF(x, t, u) = q(x, t, u) with initial condition u(x, 0) = u(0)(x). The source term may be either stiff or nonstiff. In both cases, we prove error estimates between the approximate solution given by a finite volume scheme (the scheme is totally explicit in the nonstiff case, semi-implicit in the stiff case) and the entropy solution. The order of these estimates is h(1)/(4) in space-time L-1-norm (h denotes the size of the mesh). Furthermore, the error estimate does not depend on the stiffness of the source term in the stiff case.
引用
收藏
页码:607 / 639
页数:33
相关论文
共 50 条
  • [41] Centred unsplit finite volume schemes for multidimensional hyperbolic conservation laws
    Toro, EF
    Hu, W
    [J]. GODUNOV METHODS: THEORY AND APPLICATIONS, 2001, : 899 - 906
  • [42] A New Type of Finite Volume WENO Schemes for Hyperbolic Conservation Laws
    Jun Zhu
    Jianxian Qiu
    [J]. Journal of Scientific Computing, 2017, 73 : 1338 - 1359
  • [43] A quantitative compactness estimate for scalar conservation laws
    De Lellis, C
    Golse, F
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (07) : 989 - 998
  • [44] A New Type of Finite Volume WENO Schemes for Hyperbolic Conservation Laws
    Zhu, Jun
    Qiu, Jianxian
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (2-3) : 1338 - 1359
  • [45] Implicit kinetic schemes for scalar conservation laws
    Botchorishvili, R
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2002, 18 (01) : 26 - 43
  • [46] Weakly nonoscillatory schemes for scalar conservation laws
    Kopotun, K
    Neamtu, M
    Popov, B
    [J]. MATHEMATICS OF COMPUTATION, 2003, 72 (244) : 1747 - 1767
  • [47] Multiresolution schemes on triangles for scalar conservation laws
    Cohen, A
    Dyn, N
    Kaber, SM
    Postel, M
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 161 (01) : 264 - 286
  • [48] Central schemes for networked scalar conservation laws
    Herty, Michael
    Kolbe, Niklas
    Mueller, Siegfried
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (01) : 310 - 340
  • [49] Adaptive finite volume schemes for conservation laws based on local multiresolution techniques
    Gottschlich-Müller, B
    Müller, S
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOL 1, 1999, 129 : 385 - 394
  • [50] Boundary stabilization of hyperbolic conservation laws using conservative finite volume schemes
    Herty, Michael
    Yu, Hui
    [J]. 2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 5577 - 5582