Implicit kinetic schemes for scalar conservation laws

被引:2
|
作者
Botchorishvili, R [1 ]
机构
[1] INRIA, M3N, F-78153 Le Chesnay, France
关键词
hyperbolic conservation laws; kinetic schemes; stiff source terms; steady state; convergence;
D O I
10.1002/num.1044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on kinetic formulation for scalar conservation laws, we present implicit kinetic schemes. For time stepping these schemes require resolution of linear systems of algebraic equations. The scheme is conservative at steady states. We prove that if time marching procedure converges to some steady state solution, then the implicit kinetic scheme converges to some entropy steady state solution. We give sufficient condition of the convergence of time marching procedure. For scalar conservation laws with a stiff source term we construct a stiff numerical scheme with discontinuous artificial viscosity coefficients that ensure the scheme to be equilibrium conserving. We couple the developed implicit approach with the stiff space discretization, thus providing improved stability and equilibrium conservation property in the resulting scheme. Numerical results demonstrate high computational capabilities (stability for large CFL numbers, fast convergence, accuracy) of the developed implicit approach. (C) 2002 John Wiley & Sons, Inc.
引用
收藏
页码:26 / 43
页数:18
相关论文
共 50 条
  • [1] Second Order Implicit Schemes for Scalar Conservation Laws
    Wagner, Lisa
    Lang, Jens
    Kolb, Oliver
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS (ENUMATH 2015), 2016, 112 : 33 - 41
  • [2] ON A CLASS OF IMPLICIT AND EXPLICIT SCHEMES OF VANLEER TYPE FOR SCALAR CONSERVATION-LAWS
    CHALABI, A
    VILA, JP
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1989, 23 (02): : 261 - 282
  • [3] Higher Order Compact Implicit Finite Volume Schemes for Scalar Conservation Laws
    Zakova, Dagmar
    Frolkovic, Peter
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOL II, HYP2022, 2024, 35 : 221 - 231
  • [4] Sharp CFL, discrete kinetic formulation, and entropic schemes for scalar conservation laws
    Makridakis, C
    Perthame, B
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (03) : 1032 - 1051
  • [5] A theory of implicit methods for scalar conservation laws
    Breuss, M
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2003, : 377 - 386
  • [6] Weakly nonoscillatory schemes for scalar conservation laws
    Kopotun, K
    Neamtu, M
    Popov, B
    [J]. MATHEMATICS OF COMPUTATION, 2003, 72 (244) : 1747 - 1767
  • [7] Multiresolution schemes on triangles for scalar conservation laws
    Cohen, A
    Dyn, N
    Kaber, SM
    Postel, M
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 161 (01) : 264 - 286
  • [8] Central schemes for networked scalar conservation laws
    Herty, Michael
    Kolbe, Niklas
    Mueller, Siegfried
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (01) : 310 - 340
  • [9] Kinetic formulation for heterogeneous scalar conservation laws
    Dalibard, Anne-Laure
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (04): : 475 - 498
  • [10] KINETIC SOLUTIONS FOR NONLOCAL SCALAR CONSERVATION LAWS
    Wei, Jinlong
    Duan, Jinqiao
    Lv, Guangying
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (02) : 1521 - 1543