KINETIC SOLUTIONS FOR NONLOCAL SCALAR CONSERVATION LAWS

被引:7
|
作者
Wei, Jinlong [1 ]
Duan, Jinqiao [2 ]
Lv, Guangying [3 ]
机构
[1] Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430073, Hubei, Peoples R China
[2] IIT, Dept Appl Math, Chicago, IL 60616 USA
[3] Inst Appl Math, Kaifeng, Henan, Peoples R China
基金
中国博士后科学基金;
关键词
kinetic solution; nonlocal conservation laws; uniqueness; existence; anomalous diffusion; BURGERS-EQUATION; FORMULATION; ADVECTION; SYSTEM;
D O I
10.1137/16M108687X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to examining the uniqueness and existence of kinetic solutions for a class of scalar conservation laws involving a nonlocal supercritical diffusion operator. Our proof for uniqueness is based upon the analysis of a microscopic contraction functional, and the existence is enabled by a parabolic approximation. As an illustration, we obtain the existence and uniqueness of kinetic solutions for the generalized fractional Burgers-Fisher-type equations. Moreover, we demonstrate the kinetic solutions' Lipschitz continuity in time and continuous dependence on nonlinearities and Levy measures.
引用
收藏
页码:1521 / 1543
页数:23
相关论文
共 50 条
  • [1] KINETIC SOLUTIONS FOR NONLOCAL STOCHASTIC CONSERVATION LAWS
    Lv, Guangying
    Gao, Hongjun
    Wei, Jinlong
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (02) : 559 - 584
  • [2] Kinetic Solutions for Nonlocal Stochastic Conservation Laws
    Guangying Lv
    Hongjun Gao
    Jinlong Wei
    Fractional Calculus and Applied Analysis, 2021, 24 : 559 - 584
  • [3] The Equivalence Theorem of Kinetic Solutions and Entropy Solutions for Stochastic Scalar Conservation Laws
    Noboriguchi, Dai
    TOKYO JOURNAL OF MATHEMATICS, 2015, 38 (02) : 575 - 587
  • [4] ON THE NUMERICAL INTEGRATION OF SCALAR NONLOCAL CONSERVATION LAWS
    Amorim, Paulo
    Colombo, Rinaldo M.
    Teixeira, Andreia
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01): : 19 - 37
  • [5] Nonlocal scalar conservation laws with discontinuous flux
    Chiarello, Felisia Angela
    Coclite, Giuseppe Maria
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (01) : 380 - 398
  • [6] A note on strong solutions to the variational kinetic equation for scalar conservation laws
    Perepelitsa, Misha
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2014, 11 (03) : 621 - 632
  • [7] A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws
    Natalini, R
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 148 (02) : 292 - 317
  • [8] A kinetic formulation for multi-branch entropy solutions of scalar conservation laws
    Brenier, Y.
    Corrias, L.
    Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis, 15 (02): : 169 - 190
  • [9] A kinetic formulation for multi-branch entropy solutions of scalar conservation laws
    Brenier, Y
    Corrias, L
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (02): : 169 - 190
  • [10] Kinetic formulation for heterogeneous scalar conservation laws
    Dalibard, Anne-Laure
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (04): : 475 - 498