Modelling rankings in R: the PlackettLuce package

被引:32
|
作者
Turner, Heather L. [1 ]
van Etten, Jacob [2 ]
Firth, David [1 ,3 ]
Kosmidis, Ioannis [1 ,3 ]
机构
[1] Univ Warwick, Dept Stat, Coventry, W Midlands, England
[2] Biovers Int, Turrialba, Costa Rica
[3] Alan Turing Inst, London, England
基金
英国工程与自然科学研究理事会;
关键词
Plackett-Luce model; Partial rankings; Tied rankings; Shrinkage; Model-based partitioning; R;
D O I
10.1007/s00180-020-00959-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents the R package PlackettLuce, which implements a generalization of the Plackett-Luce model for rankings data. The generalization accommodates both ties (of arbitrary order) and partial rankings (complete rankings of subsets of items). By default, the implementation adds a set of pseudo-comparisons with a hypothetical item, ensuring that the underlying network of wins and losses between items is always strongly connected. In this way, the worth of each item always has a finite maximum likelihood estimate, with finite standard error. The use of pseudo-comparisons also has a regularization effect, shrinking the estimated parameters towards equal item worth. In addition to standard methods for model summary, PlackettLuce provides a method to compute quasi standard errors for the item parameters. This provides the basis for comparison intervals that do not change with the choice of identifiability constraint placed on the item parameters. Finally, the package provides a method for model-based partitioning using covariates whose values vary between rankings, enabling the identification of subgroups of judges or settings with different item worths. The features of the package are demonstrated through application to classic and novel data sets.
引用
收藏
页码:1027 / 1057
页数:31
相关论文
共 50 条
  • [31] Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME
    Soetaert, Karline
    Petzoldt, Thomas
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (03): : 1 - 28
  • [32] Flexible modelling of spatial variation in agricultural field trials with the R package INLA
    Maria Lie Selle
    Ingelin Steinsland
    John M. Hickey
    Gregor Gorjanc
    [J]. Theoretical and Applied Genetics, 2019, 132 : 3277 - 3293
  • [33] CircSpaceTime: an R package for spatial and spatio-temporal modelling of circular data
    Lasinio, Giovanna Jona
    Santoro, Mario
    Mastrantonio, Gianluca
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (07) : 1315 - 1345
  • [34] Flexible modelling of spatial variation in agricultural field trials with the R package INLA
    Selle, Maria Lie
    Steinsland, Ingelin
    Hickey, John M.
    Gorjanc, Gregor
    [J]. THEORETICAL AND APPLIED GENETICS, 2019, 132 (12) : 3277 - 3293
  • [35] flexsdm: An r package for supporting a comprehensive and flexible species distribution modelling workflow
    Elias Velazco, Santiago Jose
    Rose, Miranda Brooke
    Alves de Andrade, Andre Felipe
    Minoli, Ignacio
    Franklin, Janet
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2022, 13 (08): : 1661 - 1669
  • [36] JM: An R Package for the Joint Modelling of Longitudinal and Time-to-Event Data
    Rizopoulos, Dimitris
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2010, 35 (09): : 1 - 33
  • [37] NicheMapR - an R package for biophysical modelling: the ectotherm and Dynamic Energy Budget models
    Kearney, Michael R.
    Porter, Warren P.
    [J]. ECOGRAPHY, 2020, 43 (01) : 85 - 96
  • [38] sgdm: An R Package for Performing Sparse Generalized Dissimilarity Modelling with Tools for gdm
    Leitao, Pedro J.
    Schwieder, Marcel
    Senf, Cornelius
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2017, 6 (01)
  • [39] dynamicSDM: An R package for species geographical distribution and abundance modelling at high spatiotemporal resolution
    Dobson, Rachel
    Challinor, Andy J. J.
    Cheke, Robert A. A.
    Jennings, Stewart
    Willis, Stephen G. G.
    Dallimer, Martin
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2023, 14 (05): : 1190 - 1199
  • [40] Modelling temperature-dependent development rate and phenology in arthropods: The DEVRATE package for R
    Rebaudo, Francois
    Struelens, Quentin
    Dangles, Olivier
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2018, 9 (04): : 1144 - 1150