Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME

被引:251
|
作者
Soetaert, Karline [1 ]
Petzoldt, Thomas [2 ]
机构
[1] Netherlands Inst Ecol, CEME, NIOO, NL-4401 NT Yerseke, Netherlands
[2] Tech Univ Dresden, Inst Hydrobiol, D-01062 Dresden, Germany
来源
JOURNAL OF STATISTICAL SOFTWARE | 2010年 / 33卷 / 03期
关键词
simulation models; differential equations; fitting; sensitivity; Monte Carlo; identifiability R; IDENTIFIABILITY ANALYSIS;
D O I
10.18637/jss.v033.i03
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Mathematical simulation models are commonly applied to analyze experimental or environmental data and eventually to acquire predictive capabilities. Typically these models depend on poorly defined, unmeasurable parameters that need to be given a value. Fitting a model to data, so-called inverse modelling, is often the sole way of finding reasonable values for these parameters. There are many challenges involved in inverse model applications, e. g., the existence of non-identifiable parameters, the estimation of parameter uncertainties and the quantification of the implications of these uncertainties on model predictions. The R package F M E is a modeling package designed to confront a mathematical model with data. It includes algorithms for sensitivity and Monte Carlo analysis, parameter identifiability, model fitting and provides a Markov-chain based method to estimate parameter confidence intervals. Although its main focus is on mathematical systems that consist of differential equations, F M E can deal with other types of models. In this paper, F M E is applied to a model describing the dynamics of the HIV virus.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [1] Automating calibration, sensitivity and uncertainty analysis of complex models using the R package Flexible Modeling Environment (FME): SWAT as an example
    Wu, Yiping
    Liu, Shuguang
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2012, 31 : 99 - 109
  • [2] Sensitivity analysis of network reliability using Monte Carlo
    Rubino, G
    [J]. Proceedings of the 2005 Winter Simulation Conference, Vols 1-4, 2005, : 491 - 498
  • [3] INVERSE MONTE-CARLO ANALYSIS
    DUNN, WL
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 41 (01) : 154 - 166
  • [4] Monte Carlo analysis of inverse problems
    Mosegaard, K
    Sambridge, M
    [J]. INVERSE PROBLEMS, 2002, 18 (03) : R29 - R54
  • [5] Modelling Radiation Dose Distribution within Thorax using Monte Carlo Package Codes
    Herwiningsih, Sri
    Fielding, Andrew
    [J]. 9TH ANNUAL BASIC SCIENCE INTERNATIONAL CONFERENCE 2019 (BASIC 2019), 2019, 546
  • [6] A tutorial on spatio-temporal disease risk modelling in R using Markov chain Monte Carlo simulation and the CARBayesST package
    Lee, Duncan
    [J]. SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2020, 34
  • [7] Inverse direct lighting with a Monte Carlo method and declarative modelling
    Jolivet, V
    Plemenos, D
    Poulingeas, P
    [J]. COMPUTATIONAL SCIENCE-ICCS 2002, PT II, PROCEEDINGS, 2002, 2330 : 3 - 12
  • [8] MONTE-CARLO SENSITIVITY ANALYSIS
    GLASZIOU, P
    HILDEN, J
    [J]. MEDICAL DECISION MAKING, 1986, 6 (04) : 254 - 254
  • [9] Inverse dose planning using Monte Carlo
    Alber, M
    [J]. RADIOTHERAPY AND ONCOLOGY, 2003, 68 : S18 - S18
  • [10] Using multiple engines in the Virtual Monte Carlo package
    Volkel, Benedikt
    Morsch, Andreas
    Hrivnacova, Ivana
    Grosse-Oetringhaus, Jan Fiete
    Wenzel, Sandro
    [J]. 24TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2019), 2020, 245