Modelling rankings in R: the PlackettLuce package

被引:32
|
作者
Turner, Heather L. [1 ]
van Etten, Jacob [2 ]
Firth, David [1 ,3 ]
Kosmidis, Ioannis [1 ,3 ]
机构
[1] Univ Warwick, Dept Stat, Coventry, W Midlands, England
[2] Biovers Int, Turrialba, Costa Rica
[3] Alan Turing Inst, London, England
基金
英国工程与自然科学研究理事会;
关键词
Plackett-Luce model; Partial rankings; Tied rankings; Shrinkage; Model-based partitioning; R;
D O I
10.1007/s00180-020-00959-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents the R package PlackettLuce, which implements a generalization of the Plackett-Luce model for rankings data. The generalization accommodates both ties (of arbitrary order) and partial rankings (complete rankings of subsets of items). By default, the implementation adds a set of pseudo-comparisons with a hypothetical item, ensuring that the underlying network of wins and losses between items is always strongly connected. In this way, the worth of each item always has a finite maximum likelihood estimate, with finite standard error. The use of pseudo-comparisons also has a regularization effect, shrinking the estimated parameters towards equal item worth. In addition to standard methods for model summary, PlackettLuce provides a method to compute quasi standard errors for the item parameters. This provides the basis for comparison intervals that do not change with the choice of identifiability constraint placed on the item parameters. Finally, the package provides a method for model-based partitioning using covariates whose values vary between rankings, enabling the identification of subgroups of judges or settings with different item worths. The features of the package are demonstrated through application to classic and novel data sets.
引用
收藏
页码:1027 / 1057
页数:31
相关论文
共 50 条
  • [1] Modelling rankings in R: the PlackettLuce package
    Heather L. Turner
    Jacob van Etten
    David Firth
    Ioannis Kosmidis
    [J]. Computational Statistics, 2020, 35 : 1027 - 1057
  • [2] Rankcluster: An R Package for Clustering Multivariate Partial Rankings
    Jacques, Julien
    Grimonprez, Quentin
    Biernacki, Christophe
    [J]. R JOURNAL, 2014, 6 (01): : 101 - 110
  • [3] grmsem: R Package for Genetic Modelling
    Barendse, Mariska
    Kiassmann, Alexander
    St Pourcain, Beate
    [J]. HUMAN HEREDITY, 2021, 85 (02) : 71 - 71
  • [4] prefmod: An R Package for Modeling Preferences Based on Paired Comparisons, Rankings, or Ratings
    Hatzinger, Reinhold
    Dittrich, Regina
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2012, 48 (10): : 1 - 31
  • [5] MadingleyR: An R package for mechanistic ecosystem modelling
    Hoeks, Selwyn
    Tucker, Marlee A.
    Huijbregts, Mark A. J.
    Harfoot, Mike B. J.
    Bithell, Mike
    Santini, Luca
    [J]. GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2021, 30 (09): : 1922 - 1933
  • [6] NicheMapR - an R package for biophysical modelling: the endotherm model
    Kearney, Michael R.
    Briscoe, Natalie J.
    Mathewson, Paul D.
    Porter, Warren P.
    [J]. ECOGRAPHY, 2021, 44 (11) : 1595 - 1605
  • [7] NicheMapR - an R package for biophysical modelling: the microclimate model
    Kearney, Michael R.
    Porter, Warren P.
    [J]. ECOGRAPHY, 2017, 40 (05) : 664 - 674
  • [8] LakeEnsemblR: An R package that facilitates ensemble modelling of lakes
    Moore, Tadhg N.
    Mesman, Jorrit P.
    Ladwig, Robert
    Feldbauer, Johannes
    Olsson, Freya
    Pilla, Rachel M.
    Shatwell, Tom
    Venkiteswaran, Jason J.
    Delany, Austin D.
    Dugan, Hilary
    Rose, Kevin C.
    Read, Jordan S.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2021, 143
  • [9] Generalized Hermite Distribution Modelling with the R Package hermite
    Morina, David
    Higueras, Manuel
    Puig, Pedro
    Oliveira, Maria
    [J]. R JOURNAL, 2015, 7 (02): : 263 - 274
  • [10] Microclima: An r package for modelling meso- and microclimate
    Maclean, Ilya M. D.
    Mosedale, Jonathan R.
    Bennie, Jonathan J.
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2019, 10 (02): : 280 - 290