Generalized Hermite Distribution Modelling with the R Package hermite

被引:0
|
作者
Morina, David [1 ,2 ,3 ,4 ]
Higueras, Manuel [5 ]
Puig, Pedro [6 ]
Oliveira, Maria [7 ]
机构
[1] Ctr Res Environm Epidemiol CREAL, Barcelona, Spain
[2] Univ Pompeu Fabra, Barcelona, Spain
[3] CIBER Epidemiol & Salud Publ CIBERESP, Barcelona, Spain
[4] Univ Autonoma Barcelona, Fac Med, Unitat Bioestadist, GRAAL, Barcelona 08003, Spain
[5] Univ Autonoma Barcelona, Dept Math, Publ Hlth England, Ctr Radiat Chem & Environm Hazards, Chilton OX11 0RQ, Oxon, England
[6] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[7] Univ Santiago de Compostela, Dept Estadist & Invest Operat, Santiago De Compostela 15782, Spain
来源
R JOURNAL | 2015年 / 7卷 / 02期
关键词
MAXIMUM-LIKELIHOOD ESTIMATORS; COMPOUND;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Generalized Hermite distribution (and the Hermite distribution as a particular case) is often used for fitting count data in the presence of overdispersion or multimodality. Despite this, to our knowledge, no standard software packages have implemented specific functions to compute basic probabilities and make simple statistical inference based on these distributions. We present here a set of computational tools that allows the user to face these difficulties by modelling with the Generalized Hermite distribution using the R package hermite. The package can also be used to generate random deviates from a Generalized Hermite distribution and to use basic functions to compute probabilities (density, cumulative density and quantile functions are available), to estimate parameters using the maximum likelihood method and to perform the likelihood ratio test for Poisson assumption against a Generalized Hermite alternative. In order to improve the density and quantile functions performance when the parameters are large, Edgeworth and Cornish-Fisher expansions have been used. Hermite regression is also a useful tool for modeling inflated count data, so its inclusion to a commonly used software like R will make this tool available to a wide range of potential users. Some examples of usage in several fields of application are also given.
引用
收藏
页码:263 / 274
页数:12
相关论文
共 50 条
  • [1] GENERALIZED HERMITE DISTRIBUTION AND ITS PROPERTIES
    GUPTA, RP
    JAIN, GC
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1974, 27 (02) : 359 - 363
  • [2] DISTRIBUTION OF ZEROES TO GENERALIZED HERMITE POLYNOMIALS
    Novokshenov, V. Yu.
    Schelkonogov, A. A.
    [J]. UFA MATHEMATICAL JOURNAL, 2015, 7 (03): : 54 - 66
  • [3] On some aspects of intervened generalized Hermite distribution
    Kumar C.S.
    Shibu D.S.
    [J]. METRON, 2013, 71 (1) : 9 - 19
  • [4] Generalized Gauss–Hermite filtering
    Hermann Singer
    [J]. AStA Advances in Statistical Analysis, 2008, 92 : 179 - 195
  • [5] GENERALIZED HERMITE-POLYNOMIALS
    LASSALLE, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (09): : 579 - 582
  • [6] Monogenic Generalized Hermite Polynomials and Associated Hermite-Bessel Functions
    Cacao, I.
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1455 - 1458
  • [7] On regularity of generalized Hermite interpolation
    Shekhtman, Boris
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2016, 45 : 134 - 139
  • [8] Hermite张量的秩R正Hermite逼近算法与正Hermite分解
    杨博
    李颖
    倪谷炎
    张梦石
    [J]. 中国科学:数学, 2023, 53 (08) : 1125 - 1144
  • [9] Some generalized Hermite–Hadamard–Fejér inequality for convex functions
    Miguel Vivas-Cortez
    Péter Kórus
    Juan E. Nápoles Valdés
    [J]. Advances in Difference Equations, 2021
  • [10] On the Hermite–Fejér Interpolation Based at the Zeros of Generalized Freud Polynomials
    Maria Carmela De Bonis
    Giuseppe Mastroianni
    [J]. Mediterranean Journal of Mathematics, 2018, 15