Scaling of the turbulent energy dissipation correlation function

被引:12
|
作者
Tang, S. L. [1 ,2 ]
Antonia, R. A. [3 ]
Djenidi, L. [3 ]
Zhou, Y. [1 ,2 ]
机构
[1] Harbin Inst Technol, Inst Turbulence Noise Vibrat Interact & Control, Shenzhen 518055, Peoples R China
[2] Digital Engn Lab Offshore Equipment, Shenzhen 518055, Peoples R China
[3] Univ Newcastle, Sch Engn, Callaghan, NSW 2308, Australia
关键词
turbulence theory; REYNOLDS-NUMBER DEPENDENCE; INTERMITTENCY EXPONENT; ISOTROPIC TURBULENCE; TRANSPORT-EQUATION; VELOCITY; FLUCTUATIONS; STATISTICS; RANGE;
D O I
10.1017/jfm.2020.171
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We examine the scaling of the two-point correlation function for , the energy dissipation rate, over a range of values of the separation between the two points and the Taylor microscale Reynolds number . The correlation function is estimated from hot-wire measurements in grid turbulence, along the axes of wakes and jets, and along the centreline of a fully developed channel flow. When exceeds a value of approximately 300, a condition which is achieved for both plane and circular jets, the correlation function collapses over nearly all values of when the normalization uses Kolmogorov scales. However, there is no collapse in either the power-law range or dissipative range when the normalization is on the integral (or external) length scale, which indicates that there is no self-similarity based on external scales. Although the maximum value of is not much larger than , the behaviour of the energy dissipation correlation function on the axes of plane and circular jets seems consistent with the first similarity hypothesis of Kolmogorov (Dokl. Akad. Nauk SSSR, vol. 30, 1941, pp. 299-303) but not with the revised phenomenology of Kolmogorov (J. Fluid Mech., vol. 13, 1962, pp. 82-85).
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Model for intermittency of energy dissipation in turbulent flows
    Lepreti, Fabio
    Carbone, Vincenzo
    Veltri, Pierluigi
    PHYSICAL REVIEW E, 2006, 74 (02):
  • [43] Vertical kinetic energy and turbulent dissipation in the ocean
    Thurnherr, A. M.
    Kunze, E.
    Toole, J. M.
    St Laurent, L.
    Richards, K. J.
    Ruiz-Angulo, A.
    GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (18) : 7639 - 7647
  • [44] Turbulent Kinetic Energy Dissipation in Barrow Canyon
    Shroyer, E. L.
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2012, 42 (06) : 1012 - 1021
  • [45] TURBULENT ENERGY DISSIPATION IN ATMOSPHERIC BOUNDARY LAYER
    VOLKOVIT.ZI
    IVANOV, VN
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA, 1970, 6 (05): : 435 - &
  • [46] Turbulent jet energy dissipation at vertical drops
    Chamani, Mohammad R.
    Rajaratnam, N.
    Beirami, M. K.
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 2008, 134 (10): : 1532 - 1535
  • [47] Upper bounds on the energy dissipation in turbulent precession
    Kerswell, RR
    JOURNAL OF FLUID MECHANICS, 1996, 321 : 335 - 370
  • [48] Modeling of the Dissipation Rate of Turbulent Kinetic Energy
    Mortikov, E. V.
    Glazunov, A. V.
    Debolskiy, A. V.
    Lykosov, V. N.
    Zilitinkevich, S. S.
    DOKLADY EARTH SCIENCES, 2019, 489 (02) : 1440 - 1443
  • [49] Turbulent Kinetic Energy Dissipation in the Surface Layer
    Charuchittipan, D.
    Wilson, J. D.
    BOUNDARY-LAYER METEOROLOGY, 2009, 132 (02) : 193 - 204
  • [50] TURBULENT ENERGY PRODUCTION, DISSIPATION AND TRANSFER - COMMENT
    BRADSHAW, P
    PHYSICS OF FLUIDS, 1974, 17 (11) : 2149 - 2149