Scaling of the turbulent energy dissipation correlation function

被引:12
|
作者
Tang, S. L. [1 ,2 ]
Antonia, R. A. [3 ]
Djenidi, L. [3 ]
Zhou, Y. [1 ,2 ]
机构
[1] Harbin Inst Technol, Inst Turbulence Noise Vibrat Interact & Control, Shenzhen 518055, Peoples R China
[2] Digital Engn Lab Offshore Equipment, Shenzhen 518055, Peoples R China
[3] Univ Newcastle, Sch Engn, Callaghan, NSW 2308, Australia
关键词
turbulence theory; REYNOLDS-NUMBER DEPENDENCE; INTERMITTENCY EXPONENT; ISOTROPIC TURBULENCE; TRANSPORT-EQUATION; VELOCITY; FLUCTUATIONS; STATISTICS; RANGE;
D O I
10.1017/jfm.2020.171
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We examine the scaling of the two-point correlation function for , the energy dissipation rate, over a range of values of the separation between the two points and the Taylor microscale Reynolds number . The correlation function is estimated from hot-wire measurements in grid turbulence, along the axes of wakes and jets, and along the centreline of a fully developed channel flow. When exceeds a value of approximately 300, a condition which is achieved for both plane and circular jets, the correlation function collapses over nearly all values of when the normalization uses Kolmogorov scales. However, there is no collapse in either the power-law range or dissipative range when the normalization is on the integral (or external) length scale, which indicates that there is no self-similarity based on external scales. Although the maximum value of is not much larger than , the behaviour of the energy dissipation correlation function on the axes of plane and circular jets seems consistent with the first similarity hypothesis of Kolmogorov (Dokl. Akad. Nauk SSSR, vol. 30, 1941, pp. 299-303) but not with the revised phenomenology of Kolmogorov (J. Fluid Mech., vol. 13, 1962, pp. 82-85).
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Turbulent energy dissipation in density jumps
    Hassid, S.
    Regev, A.
    Poreh, M.
    Journal of Fluid Mechanics, 2007, 572 : 1 - 12
  • [22] TURBULENT ENERGY-DISSIPATION IN A WAKE
    BROWNE, LWB
    ANTONIA, RA
    SHAH, DA
    JOURNAL OF FLUID MECHANICS, 1987, 179 : 307 - 326
  • [23] A new model for turbulent energy dissipation
    Jiang, JB
    Wang, LB
    Lu, ZM
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2001, 2 (03) : 277 - 282
  • [24] Resonant Enhancement of Turbulent Energy Dissipation
    Cekli, Hakki Ergun
    Tipton, Carl
    van de Water, Willem
    PHYSICAL REVIEW LETTERS, 2010, 105 (04)
  • [25] Dissipation of turbulent kinetic energy in a tundish
    Najera, Alfonso
    Morales, R. D.
    SOHN INTERNATIONAL SYMPOSIUM ADVANCED PROCESSING OF METALS AND MATERIALS, VOL 5: NEW, IMPROVED AND EXISTING TECHNOLOGIES: IRON AND STEEL AND RECYCLING AND WASTE TREATMENT, 2006, : 223 - 240
  • [26] Intermittent energy dissipation by turbulent reconnection
    Fu, H. S.
    Vaivads, A.
    Khotyaintsev, Y. V.
    Andre, M.
    Cao, J. B.
    Olshevsky, V.
    Eastwood, J. P.
    Retino, A.
    GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (01) : 37 - 43
  • [27] ENERGY DISSIPATION IN TURBULENT BOUNDARY LAYERS
    TANI, I
    JOURNAL OF THE AERONAUTICAL SCIENCES, 1956, 23 (06): : 606 - 607
  • [28] Estimation of turbulent kinetic energy dissipation
    Chen, HL
    Hondzo, M
    Rao, AR
    WATER RESOURCES RESEARCH, 2001, 37 (06) : 1761 - 1769
  • [29] TURBULENT ENERGY PRODUCTION, DISSIPATION, AND TRANSFER
    BRODKEY, RS
    NYCHAS, SG
    TARABA, JL
    WALLACE, JM
    PHYSICS OF FLUIDS, 1973, 16 (11) : 2010 - 2011
  • [30] Turbulent energy dissipation in density jumps
    Hassid, S.
    Regev, A.
    Poreh, M.
    JOURNAL OF FLUID MECHANICS, 2007, 572 : 1 - 12