On the locating chromatic number of trees

被引:0
|
作者
Hafidh, Yusuf [1 ]
Baskoro, Edy Tri [1 ]
机构
[1] Inst Teknol Bandung, Fac Math & Nat Sci, Combinatorial Math Res Grp, Jalan Ganesa 10, Bandung, Indonesia
来源
INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE | 2022年 / 17卷 / 01期
关键词
Locating chromatic number; tree; graph;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A palm S-n(a(1), a(2) , ... , a(n)) is simply a subdivision of a star S-n on every edge in ai - 1 times (for the ith-edge). In this paper, we derive some 'better' upper bound of the locating chromatic number of a tree by using the locating coloring of its composing palms. We also determine the locating chromatic number of a palm itself. We prove the complexity of the locating chromatic number of a regular palm tree Sn(k) and an olive S-n(1, 2, ... , n), namely X-L(S-n(k)) = Theta(n(1/k)); X-L(S-n(3)) = (1+o(1))(3)root 4n; and X-L(O-n) = [log(3) (n/4)] +3.
引用
收藏
页码:377 / 394
页数:18
相关论文
共 50 条
  • [31] On the locating-chromatic number for graphs with two homogenous components
    Welyyanti, Des
    Baskoro, Edy Tri
    Simajuntak, Rinovia
    Uttunggadewa, Saladin
    ASIAN MATHEMATICAL CONFERENCE 2016 (AMC 2016), 2017, 893
  • [32] The locating chromatic number of generalized Petersen graphs with small order
    Sakri, Redha
    Abbas, Moncef
    EXAMPLES AND COUNTEREXAMPLES, 2021, 5
  • [33] The locating chromatic number for m-shadow of a connected graph
    Sudarsana, I. Wayan
    Susanto, Faisal
    Musdalifah, Selvy
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (02) : 589 - 601
  • [34] The dominating partition dimension and locating- chromatic number of graphs
    Ridwan, Muhammad
    Assiyatun, Hilda
    Baskoro, Edy Tri
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2023, 11 (02) : 455 - 465
  • [35] ON TWO CONJECTURES REGARDING THE NEIGHBOR-LOCATING CHROMATIC NUMBER
    Ghanbari, Ali
    Mojdeh, Doost ali
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024,
  • [36] Radius three trees in graphs with large chromatic number
    Kierstead, HA
    Zhu, YX
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2004, 17 (04) : 571 - 581
  • [37] The k-distance chromatic number of trees and cycles
    Niranjan, P. K.
    Kola, Srinivasa Rao
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2019, 16 (02) : 230 - 235
  • [38] Relaxed game chromatic number of trees and outerplanar graphs
    He, WJ
    Wu, JJ
    Zhu, XD
    DISCRETE MATHEMATICS, 2004, 281 (1-3) : 209 - 219
  • [39] Partial k-trees with maximum chromatic number
    Chlebíková, J
    DISCRETE MATHEMATICS, 2002, 259 (1-3) : 269 - 276
  • [40] A note on the locating-total domination number in trees
    Rad, Nader Jafari
    Rahbani, Hadi
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 66 : 420 - 424