Adaptive deployment of model reductions for tau-leaping simulation

被引:7
|
作者
Wu, Sheng [1 ]
Fu, Jin [1 ]
Petzold, Linda R. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2015年 / 142卷 / 20期
基金
美国国家科学基金会;
关键词
ACCELERATED STOCHASTIC SIMULATION; STEADY-STATE ASSUMPTION;
D O I
10.1063/1.4921638
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multiple time scales in cellular chemical reaction systems often render the tau-leaping algorithm inefficient. Various model reductions have been proposed to accelerate tau-leaping simulations. However, these are often identified and deployed manually, requiring expert knowledge. This is time-consuming and prone to error. In previous work, we proposed a methodology for automatic identification and validation of model reduction opportunities for tau-leaping simulation. Here, we show how the model reductions can be automatically and adaptively deployed during the time course of a simulation. For multiscale systems, this can result in substantial speedups. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Simulation model deployment for particulate processes in an industrial environment
    Skillas, George
    Becker, Catrin
    Vorholz, Johannes
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2006, 45 (10) : 815 - 825
  • [42] An adaptive Economic Simulation Model
    Tout, K
    Stender, P
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2001, 78 (01) : 39 - 55
  • [43] DEVS MODEL DESIGN FOR SIMULATION WEB APP DEPLOYMENT
    Capocchi, Laurent
    Santucci, Jean-Francois
    Fericean, Johanna
    Zeigler, Bernard P.
    2022 WINTER SIMULATION CONFERENCE (WSC), 2022, : 2154 - 2165
  • [44] Adaptive Grouping Cloud Model Shuffled Frog Leaping Algorithm for Solving Continuous Optimization Problems
    Liu, Haorui
    Yi, Fengyan
    Yang, Heli
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016
  • [45] Secured VM Deployment in the Cloud: Benchmarking the Enhanced Simulation Model
    Nauman, Umer
    Zhang, Yuhong
    Li, Zhihui
    Zhen, Tong
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [46] Parametric Model Method and Deployment Simulation of Inflatable Antenna Structures
    Xu Yan
    Zheng Yao
    Guan Fuling
    Huang He
    Xu Xian
    JOURNAL OF AEROSPACE TECHNOLOGY AND MANAGEMENT, 2015, 7 (02) : 219 - 230
  • [47] A COMPUTER-SIMULATION MODEL FOR THE STUDY OF POLICE PATROL DEPLOYMENT
    KERN, GM
    SIMULATION, 1989, 52 (06) : 226 - 232
  • [48] Adaptive inventory control simulation model
    Kljajic, M
    Skraba, A
    Bernik, I
    AUTOMATED SYSTEMS BASED ON HUMAN SKILL 2000: JOINT DESIGN OF TECHNOLOGY AND ORGANISATION, 2000, : 163 - 166
  • [49] Adaptive Estimation of Quantiles in a Simulation Model
    Kohler, Michael
    Krzyzak, Adam
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (01) : 501 - 512
  • [50] S-Leaping: An Adaptive, Accelerated Stochastic Simulation Algorithm, Bridging τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-Leaping and R-Leaping
    Jana Lipková
    Georgios Arampatzis
    Philippe Chatelain
    Bjoern Menze
    Petros Koumoutsakos
    Bulletin of Mathematical Biology, 2019, 81 (8) : 3074 - 3096