Adaptive deployment of model reductions for tau-leaping simulation

被引:7
|
作者
Wu, Sheng [1 ]
Fu, Jin [1 ]
Petzold, Linda R. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2015年 / 142卷 / 20期
基金
美国国家科学基金会;
关键词
ACCELERATED STOCHASTIC SIMULATION; STEADY-STATE ASSUMPTION;
D O I
10.1063/1.4921638
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multiple time scales in cellular chemical reaction systems often render the tau-leaping algorithm inefficient. Various model reductions have been proposed to accelerate tau-leaping simulations. However, these are often identified and deployed manually, requiring expert knowledge. This is time-consuming and prone to error. In previous work, we proposed a methodology for automatic identification and validation of model reduction opportunities for tau-leaping simulation. Here, we show how the model reductions can be automatically and adaptively deployed during the time course of a simulation. For multiscale systems, this can result in substantial speedups. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] cuTauLeaping: A GPU-Powered Tau-Leaping Stochastic Simulator for Massive Parallel Analyses of Biological Systems
    Nobile, Marco S.
    Cazzaniga, Paolo
    Besozzi, Daniela
    Pescini, Dario
    Mauri, Giancarlo
    PLOS ONE, 2014, 9 (03):
  • [32] Marcus canonical integral for non-Gaussian processes and its computation: Pathwise simulation and tau-leaping algorithm (vol 138, 104118, 2013)
    Li, Tiejun
    Min, Bin
    Wang, Zhiming
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (09):
  • [33] Tau leaping stochastic simulation method in P systems
    Cazzaniga, Paolo
    Pescini, Dario
    Besozzi, Daniela
    Mauri, Giancarlo
    MEMBRANE COMPUTING, 2006, 4361 : 298 - +
  • [34] S-Leaping: An Adaptive, Accelerated Stochastic Simulation Algorithm, Bridging τ-Leaping and R-Leaping
    Lipkova, Jana
    Arampatzis, Georgios
    Chatelain, Philippe
    Menze, Bjoern
    Koumoutsakos, Petros
    BULLETIN OF MATHEMATICAL BIOLOGY, 2019, 81 (08) : 3074 - 3096
  • [35] Comment on "Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method" [J. Chem. Phys. 119, 12784 (2003)]
    De Cock, K
    Zhang, XY
    Bugallo, MF
    Djuric, PM
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (07): : 3347 - 3348
  • [36] cuTauLeaping: A GPU-Powered Tau-Leaping Stochastic Simulator for Massive Parallel Analyses of Biological Systems (vol 9, e91963, 2014)
    Nobile, M. S.
    Cazzaniga, P.
    Besozzi, D.
    Pescini, D.
    Mauri, G.
    PLOS ONE, 2014, 9 (06):
  • [37] Simulation reductions for the ising model
    Huber M.
    Journal of Statistical Theory and Practice, 2011, 5 (3) : 413 - 424
  • [38] A simulation model for military deployment
    Ydirim, Ugur Z.
    Sabuncuoglu, Ihsan
    Tansel, Barbaros
    PROCEEDINGS OF THE 2007 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2007, : 1340 - 1348
  • [39] Automatic identification of model reductions for discrete stochastic simulation
    Wu, Sheng
    Fu, Jin
    Li, Hong
    Petzold, Linda
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (03):
  • [40] Supporting manufacturing with simulation: Model design, development, and deployment
    Chance, F
    Robinson, J
    Fowler, J
    1996 WINTER SIMULATION CONFERENCE PROCEEDINGS, 1996, : 114 - 121