Continuous-Frequency Microwave Heterodyne Detection in an Atomic Vapor Cell

被引:28
|
作者
Liu, Xiao-Hong [1 ,2 ]
Liao, Kai-Yu [1 ,2 ,3 ,4 ]
Zhang, Zuan-Xian [1 ,2 ]
Tu, Hai-Tao [1 ,2 ]
Bian, Wu [1 ,3 ,4 ]
Li, Zhong-Qi [1 ,3 ]
Zheng, Shun-Yuan [1 ,3 ]
Li, He-He [1 ,2 ]
Huang, Wei [1 ,2 ,3 ]
Yan, Hui [1 ,2 ,3 ]
Zhu, Shi-Liang [1 ,2 ]
机构
[1] South China Normal Univ, Sch Phys & Telecommun Engn, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Frontier Res Inst Phys, Guangdong Hong Kong Joint Lab Quantum Matter, Guangzhou 510006, Peoples R China
[3] South China Normal Univ, GPETR Ctr Quantum Precis Measurement, Guangzhou 510006, Peoples R China
[4] SCNU Qingyuan Inst Sci & Technol Innovat Co Ltd, Qingyuan 511517, Peoples R China
基金
中国国家自然科学基金;
关键词
RYDBERG ATOMS; ELECTROMETRY;
D O I
10.1103/PhysRevApplied.18.054003
中图分类号
O59 [应用物理学];
学科分类号
摘要
Atomic heterodyne dressed by a local oscillator resonant with Rydberg transitions allows high sensitivity and robust phase measurement of a microwave electric field, but it is typically limited to detection of discrete frequencies within the narrow bandwidth of Rydberg transitions. Here we demonstrate an atomic heterodyne scheme for continuous-frequency electric field measurement based on multilevel Rydberg atoms in a room-temperature vapor cell. Driven by two off-resonant microwaves acting as a tunable local oscillator field, the heterodyne receiver can retrieve the amplitude, phase, and frequency information of signal microwave in a continuous frequency band. In our experiment, the receiver achieves an electric field sensitivity of up to 1.5 mu V cm(-1) Hz(-1/2), 80-dB linear dynamic range, and over 1 GHz of continuous frequency range. We also demonstrate the reliable reception of continuously tunable phase-modulated carriers in the digital communication. This work will facilitate the application of atomic heterodyne in the areas such as radar technique, radio monitoring, and radio astronomy.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Continuous-frequency measurements of high-intensity microwave electric fields with atomic vapor cells
    Anderson, D. A.
    Raithel, G.
    APPLIED PHYSICS LETTERS, 2017, 111 (05)
  • [2] Frequency-tunable microwave field detection in an atomic vapor cell
    Horsley, Andrew
    Treutlein, Philipp
    APPLIED PHYSICS LETTERS, 2016, 108 (21)
  • [3] CONTINUOUS-FREQUENCY AUDIOMETRY
    VANDISHOECK, HAE
    ACTA OTO-LARYNGOLOGICA, 1952, 41 (1-2) : 58 - 68
  • [4] Continuous-frequency method of measurement of electrode impedance
    Darowicki, K
    Zielinski, A
    Slepski, P
    INSTRUMENTATION SCIENCE & TECHNOLOGY, 2003, 31 (01) : 53 - 62
  • [5] Measuring relaxation rate of atomic vapor cell by Microwave field detection technique
    Ru, Ning
    Liu, Xiaochi
    Duan, Junyi
    Qu, Jifeng
    2020 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS (CPEM), 2020,
  • [6] THE RESONANT ACOUSTIC PULSER - A CONTINUOUS-FREQUENCY MARINE SEISMIC SOURCE
    HARDEE, HC
    HILLS, RG
    GEOPHYSICS, 1983, 48 (08) : 1082 - 1089
  • [7] Microwave cavities for vapor cell frequency standards
    Godone, Aldo
    Micalizio, Salvatore
    Levi, Filippo
    Calosso, Claudio
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (07):
  • [8] Influence of the size of the cubic atomic vapor cell on a Rydberg atomic microwave sensor
    Zhang, Liting
    Li, Zhonghao
    Liu, Shuai
    Xu, Shihong
    Kong, Jingxia
    Zhao, Rui
    Guo, Hao
    Wen, Huanfei
    Li, Xin
    Ma, Zongmin
    Tang, Jun
    Liu, Jun
    APPLIED OPTICS, 2024, 63 (34) : 8802 - 8807
  • [9] Frequency equilibration in the vapor-cell atomic clock
    Camparo, JC
    Klimcak, CM
    Herbulock, SJ
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2005, 54 (05) : 1873 - 1880
  • [10] LOW CROSSTALK DATA COMMUNICATION AND ITS REALIZATION BY CONTINUOUS-FREQUENCY MODULATION SCHEMES
    REIFFEN, B
    WHITE, BE
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1978, 26 (01) : 131 - 135