Continuous-Frequency Microwave Heterodyne Detection in an Atomic Vapor Cell

被引:28
|
作者
Liu, Xiao-Hong [1 ,2 ]
Liao, Kai-Yu [1 ,2 ,3 ,4 ]
Zhang, Zuan-Xian [1 ,2 ]
Tu, Hai-Tao [1 ,2 ]
Bian, Wu [1 ,3 ,4 ]
Li, Zhong-Qi [1 ,3 ]
Zheng, Shun-Yuan [1 ,3 ]
Li, He-He [1 ,2 ]
Huang, Wei [1 ,2 ,3 ]
Yan, Hui [1 ,2 ,3 ]
Zhu, Shi-Liang [1 ,2 ]
机构
[1] South China Normal Univ, Sch Phys & Telecommun Engn, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Frontier Res Inst Phys, Guangdong Hong Kong Joint Lab Quantum Matter, Guangzhou 510006, Peoples R China
[3] South China Normal Univ, GPETR Ctr Quantum Precis Measurement, Guangzhou 510006, Peoples R China
[4] SCNU Qingyuan Inst Sci & Technol Innovat Co Ltd, Qingyuan 511517, Peoples R China
基金
中国国家自然科学基金;
关键词
RYDBERG ATOMS; ELECTROMETRY;
D O I
10.1103/PhysRevApplied.18.054003
中图分类号
O59 [应用物理学];
学科分类号
摘要
Atomic heterodyne dressed by a local oscillator resonant with Rydberg transitions allows high sensitivity and robust phase measurement of a microwave electric field, but it is typically limited to detection of discrete frequencies within the narrow bandwidth of Rydberg transitions. Here we demonstrate an atomic heterodyne scheme for continuous-frequency electric field measurement based on multilevel Rydberg atoms in a room-temperature vapor cell. Driven by two off-resonant microwaves acting as a tunable local oscillator field, the heterodyne receiver can retrieve the amplitude, phase, and frequency information of signal microwave in a continuous frequency band. In our experiment, the receiver achieves an electric field sensitivity of up to 1.5 mu V cm(-1) Hz(-1/2), 80-dB linear dynamic range, and over 1 GHz of continuous frequency range. We also demonstrate the reliable reception of continuously tunable phase-modulated carriers in the digital communication. This work will facilitate the application of atomic heterodyne in the areas such as radar technique, radio monitoring, and radio astronomy.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Continuous-Frequency Electric Field Measurements of D-Band Terahertz Wave Based on Rydberg Atoms
    Chai, Jiwang
    Liu, Yang
    Zhang, Yingyun
    Liu, Guixiang
    Xue, Guangtai
    Xu, Chunsheng
    Han, Shunli
    JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2025, 46 (03)
  • [32] Chirped pulse heterodyne for optimal beat note detection between a frequency comb and a continuous wave laser
    Deschenes, Jean-Daniel
    Genest, Jerome
    OPTICS EXPRESS, 2015, 23 (07): : 9295 - 9312
  • [33] A Liquid-Metal-Based Crossed-Slot Antenna With Polarization and Continuous-Frequency Reconfiguration
    Zhou, Yi
    Zhao, Ge
    Li, Xiao Yu
    Tong, Mei Song
    IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION, 2022, 3 : 1102 - 1108
  • [34] Imaging Microwave and DC Magnetic Fields in a Vapor-Cell Rb Atomic Clock
    Affolderbach, Christoph
    Du, Guan-Xiang
    Bandi, Thejesh
    Horsley, Andrew
    Treutlein, Philipp
    Mileti, Gaetano
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2015, 64 (12) : 3629 - 3637
  • [36] Continuous microwave assisted pervaporation/atomic fluorescence detection: An approach for speciation in solid samples
    Bryce, DW
    Izquierdo, A
    deCastro, MDL
    ANALYTICA CHIMICA ACTA, 1996, 324 (01) : 69 - 75
  • [37] Parallel atomic force microscopy using optical heterodyne detection
    Chantada, Laura
    Kim, Myun-Sik
    Manzardo, Omar
    Daendliker, Rene
    Aeschimann, Laure
    Staufer, Urs
    Vettiger, Peter
    Weible, Kenneth
    Herzig, Hans Peter
    MEMS, MOEMS, AND MICROMACHINING II, 2006, 6186
  • [38] MICROWAVE-BIASED EXTRINSIC PHOTORESISTOR AT HETERODYNE-DETECTION
    ANTONOV, VV
    VOITSEKHOVSKII, AV
    LILENKO, YV
    PETROV, AS
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1977, (08): : 125 - 128
  • [39] OPTICAL HETERODYNE DETECTION OF MICROWAVE SIGNALS FROM ACOUSTOOPTICAL INTERACTIONS
    FLYNN, JT
    KAUL, R
    REEDER, TM
    PROCEEDINGS OF THE IEEE, 1976, 64 (03) : 388 - 389
  • [40] HETERODYNE DETECTION OF MICROWAVE SIGNALS BY SUPERCONDUCTING MICROFILM ELEMENTS.
    Krut'ko, A.P.
    Sulima, V.S.
    Radio Engineering and Electronic Physics (English translation of Radiotekhnika i Elektronika), 1982, 27 (11): : 144 - 147