Influence of the size of the cubic atomic vapor cell on a Rydberg atomic microwave sensor

被引:0
|
作者
Zhang, Liting [1 ,2 ,3 ]
Li, Zhonghao [1 ,2 ,3 ]
Liu, Shuai [1 ,2 ,4 ]
Xu, Shihong [1 ,2 ,3 ]
Kong, Jingxia [1 ,2 ,3 ]
Zhao, Rui [1 ,2 ,3 ]
Guo, Hao [1 ,2 ,3 ]
Wen, Huanfei [1 ,2 ,3 ]
Li, Xin [1 ,2 ,3 ]
Ma, Zongmin [1 ,2 ,4 ]
Tang, Jun [1 ,2 ,4 ]
Liu, Jun [1 ,2 ,3 ]
机构
[1] North Univ China, Key Lab Instrument Sci & Dynam Testing, Minist Educ, Taiyuan 030051, Peoples R China
[2] North Univ China, Key Lab Quantum Sensing & Precis Measurement, Taiyuan 030051, Shanxi, Peoples R China
[3] North Univ China, Inst Instrument & Elect, Taiyuan 030051, Peoples R China
[4] North Univ China, Sch Semicond & Phys, Taiyuan 030051, Peoples R China
基金
中国国家自然科学基金;
关键词
1301.1.3 Atomic and Molecular Physics - 1301.1.3.1 Spectroscopy - 732.2 Control Instrumentation - 942.1.3 Optical Instruments;
D O I
10.1364/AO.542721
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This study investigates the enhancement of the microwave (MW) electric (E) field due to the Fabry-Perot (FP) effect in cubic cells of varying sizes, and it is confirmed that the lower limit of MW power can be measured. Theoretical simulations and empirical validations are conducted for three vapor cells of different sizes. At a MW frequency of 23.904 GHz, the FP effect in the 10 mm cell is found to significantly enhance the MW E-field relative to larger cells (20 and 25 mm). The results show that, due to the existence of the FP effect, the lower limit of MW power can be measured in the cubic atomic vapor cells with different sizes. These findings contribute to the advancement of the vapor cell design for quantum accuracy measurements and the development of future atomic MW communication technologies. (c) 2024 Optica Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
引用
收藏
页码:8802 / 8807
页数:6
相关论文
共 50 条
  • [1] Noise spectroscopy with a Rydberg ensemble in a hot atomic vapor cell
    He, Jun
    Liu, Qiang
    Yang, Ze
    Niu, Qiqi
    Ban, Xiaojuan
    Wang, Junmin
    PHYSICAL REVIEW A, 2021, 104 (06)
  • [2] Rydberg Atomic Sensor Sensitivity Optimization Using Detuned Microwave Field
    Wu, Shanchi
    Gong, Chen
    Li, Shangbin
    Ni, Rui
    Zhu, Jingkang
    2022 31ST WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC), 2022, : 181 - 186
  • [3] A Transportable Rydberg Atomic Microwave Electrometry
    Bian Wu
    Zheng Shunyuan
    Li Zhongqi
    Guo Zhongyu
    Ma Hengkuan
    Qiu Siyuan
    Liao Kaiyu
    Zhang Xinding
    Yan Hui
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (11)
  • [4] Dependence of Rydberg-atom-based sensor performance on different Rydberg atom populations in one atomic-vapor cell
    Wu, Bo
    Yao, Jiawei
    Wu, Fengchuan
    An, Qiang
    Fu, Yunqi
    CHINESE PHYSICS B, 2024, 33 (02)
  • [5] Dependence of Rydberg-atom-based sensor performance on different Rydberg atom populations in one atomic-vapor cell
    武博
    姚佳伟
    吴逢川
    安强
    付云起
    Chinese Physics B, 2024, 33 (02) : 423 - 428
  • [6] Coherent atomic microwave sensor
    Gerginov, V.
    da Silva, F. C. S.
    Nelson, C.
    Hati, A.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [7] Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances
    Sedlacek, Jonathon A.
    Schwettmann, Arne
    Kuebler, Harald
    Loew, Robert
    Pfau, Tilman
    Shaffer, James P.
    NATURE PHYSICS, 2012, 8 (11) : 819 - 824
  • [8] Rydberg-Raman-Ramsey resonances in atomic vapor
    Behary, Rob
    Gill, Alex
    Buikema, Aaron
    Mikhailov, Eugeniy E.
    Novikova, Irina
    PHYSICAL REVIEW A, 2024, 109 (05)
  • [9] Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances
    Jonathon A. Sedlacek
    Arne Schwettmann
    Harald Kübler
    Robert Löw
    Tilman Pfau
    James P. Shaffer
    Nature Physics, 2012, 8 : 819 - 824
  • [10] SPECTRAL ASPECTS OF THE MICROWAVE IONIZATION OF ATOMIC RYDBERG STATES
    BUCHLEITNER, A
    DELANDE, D
    CHAOS SOLITONS & FRACTALS, 1995, 5 (07) : 1125 - 1141