Influence of the size of the cubic atomic vapor cell on a Rydberg atomic microwave sensor

被引:0
|
作者
Zhang, Liting [1 ,2 ,3 ]
Li, Zhonghao [1 ,2 ,3 ]
Liu, Shuai [1 ,2 ,4 ]
Xu, Shihong [1 ,2 ,3 ]
Kong, Jingxia [1 ,2 ,3 ]
Zhao, Rui [1 ,2 ,3 ]
Guo, Hao [1 ,2 ,3 ]
Wen, Huanfei [1 ,2 ,3 ]
Li, Xin [1 ,2 ,3 ]
Ma, Zongmin [1 ,2 ,4 ]
Tang, Jun [1 ,2 ,4 ]
Liu, Jun [1 ,2 ,3 ]
机构
[1] North Univ China, Key Lab Instrument Sci & Dynam Testing, Minist Educ, Taiyuan 030051, Peoples R China
[2] North Univ China, Key Lab Quantum Sensing & Precis Measurement, Taiyuan 030051, Shanxi, Peoples R China
[3] North Univ China, Inst Instrument & Elect, Taiyuan 030051, Peoples R China
[4] North Univ China, Sch Semicond & Phys, Taiyuan 030051, Peoples R China
基金
中国国家自然科学基金;
关键词
1301.1.3 Atomic and Molecular Physics - 1301.1.3.1 Spectroscopy - 732.2 Control Instrumentation - 942.1.3 Optical Instruments;
D O I
10.1364/AO.542721
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This study investigates the enhancement of the microwave (MW) electric (E) field due to the Fabry-Perot (FP) effect in cubic cells of varying sizes, and it is confirmed that the lower limit of MW power can be measured. Theoretical simulations and empirical validations are conducted for three vapor cells of different sizes. At a MW frequency of 23.904 GHz, the FP effect in the 10 mm cell is found to significantly enhance the MW E-field relative to larger cells (20 and 25 mm). The results show that, due to the existence of the FP effect, the lower limit of MW power can be measured in the cubic atomic vapor cells with different sizes. These findings contribute to the advancement of the vapor cell design for quantum accuracy measurements and the development of future atomic MW communication technologies. (c) 2024 Optica Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
引用
收藏
页码:8802 / 8807
页数:6
相关论文
共 50 条
  • [11] Influence of Probe Laser on Instantaneous Bandwidth of Rydberg Atomic Microwave Superheterodyne Receiver System
    Liu, Chengjing
    An, Qiang
    Wu, Bo
    Wu, Fengchuan
    Liu, Yi
    Lin, Yi
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (17)
  • [12] Subwavelength microwave electric-field imaging using Rydberg atoms inside atomic vapor cells
    Fan, H. Q.
    Kumar, S.
    Daschner, R.
    Kuebler, H.
    Shaffer, J. P.
    OPTICS LETTERS, 2014, 39 (10) : 3030 - 3033
  • [13] Simultaneous Multiband Demodulation Using a Rydberg Atomic Sensor
    Meyer, David H.
    Hill, Joshua C.
    Kunz, Paul D.
    Cox, Kevin C.
    PHYSICAL REVIEW APPLIED, 2023, 19 (01)
  • [14] The Rydberg constant and proton size from atomic hydrogen
    Beyer, Axel
    Maisenbacher, Lothar
    Matveev, Arthur
    Pohl, Randolf
    Khabarova, Ksenia
    Grinin, Alexey
    Lamour, Tobias
    Yost, Dylan C.
    Hansch, Theodor W.
    Kolachevsky, Nikolai
    Udem, Thomas
    SCIENCE, 2017, 358 (6359) : 79 - +
  • [15] Frequency-tunable microwave field detection in an atomic vapor cell
    Horsley, Andrew
    Treutlein, Philipp
    APPLIED PHYSICS LETTERS, 2016, 108 (21)
  • [16] Continuous-Frequency Microwave Heterodyne Detection in an Atomic Vapor Cell
    Liu, Xiao-Hong
    Liao, Kai-Yu
    Zhang, Zuan-Xian
    Tu, Hai-Tao
    Bian, Wu
    Li, Zhong-Qi
    Zheng, Shun-Yuan
    Li, He-He
    Huang, Wei
    Yan, Hui
    Zhu, Shi-Liang
    PHYSICAL REVIEW APPLIED, 2022, 18 (05)
  • [17] Rydberg interaction induced enhanced excitation in thermal atomic vapor
    Dushmanta Kara
    Arup Bhowmick
    Ashok K. Mohapatra
    Scientific Reports, 8
  • [18] Rydberg interaction induced enhanced excitation in thermal atomic vapor
    Kara, Dushmanta
    Bhowmick, Arup
    Mohapatra, Ashok K.
    SCIENTIFIC REPORTS, 2018, 8
  • [19] Influence of pump intensity on atomic spin relaxation in a vapor cell
    杨晨
    左冠华
    田壮壮
    张玉驰
    张天才
    Chinese Physics B, 2019, 28 (11) : 343 - 347
  • [20] Influence of pump intensity on atomic spin relaxation in a vapor cell
    Yang, Chen
    Zuo, Guan-Hua
    Tian, Zhuang-Zhuang
    Zhang, Yu-Chi
    Zhang, Tian-Cai
    CHINESE PHYSICS B, 2019, 28 (11)