Identification of Road Network Intersection Types from Vehicle Telemetry Data Using a Convolutional Neural Network

被引:0
|
作者
Erramaline, Abdelmajid [1 ,2 ]
Badard, Thierry [1 ,2 ]
Cote, Marie-Pier [2 ,3 ]
Duchesne, Thierry [2 ,4 ]
Mercier, Olivier [2 ,3 ]
机构
[1] Univ Laval, Ctr Res Geospatial Data & Intelligence, Quebec City, PQ G1V 0A6, Canada
[2] Univ Laval, Big Data Res Ctr, Quebec City, PQ G1V 0A6, Canada
[3] Univ Laval, Sch Actuarial Sci, Quebec City, PQ G1V 0A6, Canada
[4] Univ Laval, Dept Math & Stat, Quebec City, PQ G1V 0A6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
car insurance; GPS traces; intersection; machine learning; road network;
D O I
10.3390/ijgi11090475
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
GPS trajectories collected from automotive telematics for insurance purposes go beyond being a collection of points on the map. They are in fact a powerful data source that we can use to extract map and road network properties. While the location of road junctions is readily available, the information about the traffic control element regulating the intersection is typically unknown. However, this information would be helpful, e.g., for contextualizing a driver's behavior. Our focus is to use a map-matched GPS OBD-dongle dataset provided by a Canadian insurance company to classify intersections into three classes according to the type of traffic control element present: traffic light, stop sign, or no sign. We design a convolutional neural network (CNN) for classifying intersections. The network takes as entries, for a defined number of trips, the speed and the acceleration profiles over each segment of one meter on a window around the intersection. Our method outperforms two other competing approaches, achieving 99% overall accuracy. Furthermore, our CNN model can infer the three classes even with as few as 25 trips.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Vortex Boundary Identification using Convolutional Neural Network
    Berenjkoub, Marzieh
    Chen, Guoning
    Gunther, Tobias
    2020 IEEE VISUALIZATION CONFERENCE - SHORT PAPERS (VIS 2020), 2020, : 261 - 265
  • [22] Skin Identification Using Deep Convolutional Neural Network
    Oghaz, Mahdi Maktab Dar
    Argyriou, Vasileios
    Monekosso, Dorothy
    Remagnino, Paolo
    ADVANCES IN VISUAL COMPUTING, ISVC 2019, PT I, 2020, 11844 : 181 - 193
  • [23] Identification of Cattle Breed using the Convolutional Neural Network
    Manoj, Sreenand
    Rakshith, S.
    Kanchana, V
    ICSPC'21: 2021 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICPSC), 2021, : 503 - 507
  • [24] IDENTIFICATION OF DEFECTIVE CHERRIES USING CONVOLUTIONAL NEURAL NETWORK
    Kaygisiz, Halil
    Cakir, Abdulkadir
    FRESENIUS ENVIRONMENTAL BULLETIN, 2022, 31 (06): : 5492 - 5498
  • [25] Neuropsychiatric Disorders Identification Using Convolutional Neural Network
    Lin, Chih-Wei
    Ding, Qilu
    MULTIMEDIA MODELING, MMM 2019, PT II, 2019, 11296 : 315 - 327
  • [26] UAV detection and identification using a convolutional neural network
    Stancic, Ivo
    Juric, Toni
    2024 9TH INTERNATIONAL CONFERENCE ON SMART AND SUSTAINABLE TECHNOLOGIES, SPLITECH 2024, 2024,
  • [27] Identification of plant microRNAs using convolutional neural network
    Zhang, Yun
    Huang, Jianghua
    Xie, Feixiang
    Huang, Qian
    Jiao, Hongguan
    Cheng, Wenbo
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [28] Tamil Author Identification Using Convolutional Neural Network
    Archchitha, A.
    Charles, E. Y. A.
    2022 22ND INTERNATIONAL CONFERENCE ON ADVANCES IN ICT FOR EMERGING REGIONS (ICTER), 2022,
  • [29] Writer Identification and Retrieval Using a Convolutional Neural Network
    Fiel, Stefan
    Sablatnig, Robert
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT II, 2015, 9257 : 26 - 37
  • [30] Kissing Bugs Identification Using Convolutional Neural Network
    Abdelghani, Bassam A.
    Banitaan, Shadi
    Maleki, Mina
    Mazen, Amna
    IEEE ACCESS, 2021, 9 : 140539 - 140548