Strongly and weakly affine vector fields on Finsler manifolds

被引:2
|
作者
Shen, Bin [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 211189, Jiangsu, Peoples R China
关键词
Finsler metric; Affine vector field; Ricci curvature; Bochner formula; THEOREM;
D O I
10.1016/j.difgeo.2018.11.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the affine vector fields on both compact and forward complete Finsler manifolds. We first give definitions of the affine transformation and the affine vector field. Unexpectedly, we find two kinds of affine fields, which are named as the strongly and weakly affine vector fields. Based on these definitions, we prove some rigidity theorems of affine fields on compact and forward complete Finsler manifolds. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:190 / 211
页数:22
相关论文
共 50 条
  • [41] LIGHTLIKE HYPERSURFACES IN SEMI-RIEMMANIAN MANIFOLDS ADMITTING AFFINE CONFORMAL VECTOR FIELDS
    Ssekajja, Samuel
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2023, 47 (02): : 297 - 308
  • [42] A mean value Laplacian for strongly Kahler-Finsler manifolds
    Zhong, CP
    Zhong, TD
    ADVANCES IN ANALYSIS AND GEOMETRY: NEW DEVELOPMENTS USING CLIFFORD ALGEBRAS, 2004, : 257 - 286
  • [43] AFFINE TRANSFORMATIONS AND PARALLEL LIGHTLIKE VECTOR FIELDS ON COMPACT LORENTZIAN 3-MANIFOLDS
    Boubel, Charles
    Mounoud, Pierre
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (03) : 2223 - 2262
  • [44] A General Schwarz Lemma for Strongly Pseudoconvex Complex Finsler Manifolds
    Li, Jinling
    Qiu, Chunhui
    Zhang, Qixin
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (07)
  • [45] Weakly complex Einstein-Finsler vector bundle
    Sun, Liling
    Zhong, Chunping
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (06) : 1079 - 1088
  • [46] Advances on affine vector fields
    Pitea, Ariana
    Postolache, M.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2009, 25 (02) : 197 - 202
  • [47] Affine Invariants of Vector Fields
    Kostkova, Jitka
    Suk, Tomas
    Flusser, Jan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (04) : 1140 - 1155
  • [48] Geodesics and Jacobi fields of pseudo-Finsler manifolds
    Angel Javaloyes, Miguel
    Soares, Bruno Learth
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 87 (1-2): : 57 - 78
  • [49] Conformal vector fields of a class of Finsler spaces
    Yang, Guojun
    PERIODICA MATHEMATICA HUNGARICA, 2024, 89 (02) : 419 - 433
  • [50] NOTE ON VECTOR FIELDS IN MANIFOLDS
    SAMELSON, H
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 36 (01) : 272 - 274