Strongly and weakly affine vector fields on Finsler manifolds

被引:2
|
作者
Shen, Bin [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 211189, Jiangsu, Peoples R China
关键词
Finsler metric; Affine vector field; Ricci curvature; Bochner formula; THEOREM;
D O I
10.1016/j.difgeo.2018.11.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the affine vector fields on both compact and forward complete Finsler manifolds. We first give definitions of the affine transformation and the affine vector field. Unexpectedly, we find two kinds of affine fields, which are named as the strongly and weakly affine vector fields. Based on these definitions, we prove some rigidity theorems of affine fields on compact and forward complete Finsler manifolds. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:190 / 211
页数:22
相关论文
共 50 条
  • [21] Einstein Finsler metrics and killing vector fields on Riemannian manifolds
    XinYue Cheng
    ZhongMin Shen
    Science China Mathematics, 2017, 60 : 83 - 98
  • [22] Einstein Finsler metrics and Killing vector fields on Riemannian manifolds
    CHENG XinYue
    SHEN ZhongMin
    ScienceChina(Mathematics), 2017, 60 (01) : 83 - 98
  • [23] On the Steinness of strongly convex Kahler Finsler manifolds
    Xia, Qiaoling
    Zhang, Xi
    MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (1-2) : 1037 - 1069
  • [24] Conformal gradient fields on Finsler manifolds
    Parvaneh Joharinad
    Periodica Mathematica Hungarica, 2021, 82 : 87 - 97
  • [25] AFFINE CONFORMAL VECTOR-FIELDS IN SEMI-RIEMANNIAN MANIFOLDS
    DUGGAL, KL
    ACTA APPLICANDAE MATHEMATICAE, 1991, 23 (03) : 275 - 294
  • [26] Conformal gradient fields on Finsler manifolds
    Joharinad, Parvaneh
    PERIODICA MATHEMATICA HUNGARICA, 2021, 82 (01) : 87 - 97
  • [27] AFFINE FUNCTIONS AND BUSEMANN FUNCTIONS ON COMPLETE FINSLER MANIFOLDS
    Innami, Nobuhiro
    Itokawa, Yoe
    Nagano, Tetsuya
    Shiohama, Katsuhiro
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (04) : 1723 - 1732
  • [28] Variational inequalities governed by strongly pseudomonotone vector fields on Hadamard manifolds
    Luong Van Nguyen
    Nguyen Thi Thu
    Nguyen Thai An
    APPLICABLE ANALYSIS, 2023, 102 (02) : 444 - 467
  • [29] On weakly harmonic maps from Finsler to Riemannian manifolds
    von der Mosel, Heiko
    Winklmann, Sven
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (01): : 39 - 57
  • [30] A Schwarz lemma for weakly Kahler-Finsler manifolds
    Nie, Jun
    Zhong, Chunping
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (04) : 1935 - 1964