Deep learning-enabled classification of gastric ulcers from wireless capsule endoscopic images

被引:2
|
作者
Bajhaiya, Deepak [1 ]
Unni, Sujatha Narayanan [1 ]
机构
[1] IIT Madras, Dept Appl Mech, Biophoton Lab, Chennai 600036, Tamil Nadu, India
关键词
Wireless capsule endoscopy; ulcer detection; deep learning; transfer learning;
D O I
10.1117/12.2622399
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The detection of gastric ulcers is commonly carried out during clinical interventions. It poses many challenges, such as extended time of diagnosis, requirement for clinical expertise, and background noise elimination, especially in early ulcer detection. We adopt a transfer learning-based approach to automatically detect ulcers from wireless-capsule endoscopic (WCE) images. We employed DenseNet121, a convolutional neural network-based pre-trained model for ulcer classification, and realized an optimal performance matrix for test data after training and validation. The DenseNet121 pre-trained model achieved 99.94% classification accuracy with 100% precision, 97.67% recall, and 98.82% F1-score for the test dataset that demonstrates the efficacy of the adopted deep learning model for fast and accurate gastric ulcer screening.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Hookworm Detection in Wireless Capsule Endoscopy Images With Deep Learning
    He, Jun-Yan
    Wu, Xiao
    Jiang, Yu-Gang
    Peng, Qiang
    Jain, Ramesh
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (05) : 2379 - 2392
  • [22] Deep learning-enabled medical computer vision
    Esteva, Andre
    Chou, Katherine
    Yeung, Serena
    Naik, Nikhil
    Madani, Ali
    Mottaghi, Ali
    Liu, Yun
    Topol, Eric
    Dean, Jeff
    Socher, Richard
    NPJ DIGITAL MEDICINE, 2021, 4 (01)
  • [23] Federated Learning-Enabled Jamming Detection and Waveform Classification for Distributed Tactical Wireless Networks
    Meftah, Aida
    Do, Tri Nhu
    Kaddoum, Georges
    Talhi, Chamseddine
    Singh, Satinder
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (04): : 5053 - 5072
  • [24] Deep learning-enabled medical computer vision
    Andre Esteva
    Katherine Chou
    Serena Yeung
    Nikhil Naik
    Ali Madani
    Ali Mottaghi
    Yun Liu
    Eric Topol
    Jeff Dean
    Richard Socher
    npj Digital Medicine, 4
  • [25] Deep Learning-Enabled Technologies for Bioimage Analysis
    Rabbi, Fazle
    Dabbagh, Sajjad Rahmani
    Angin, Pelin
    Yetisen, Ali Kemal
    Tasoglu, Savas
    MICROMACHINES, 2022, 13 (02)
  • [26] Efficient Deep Reinforcement Learning-Enabled Recommendation
    Pang, Guangyao
    Wang, Xiaoming
    Wang, Liang
    Hao, Fei
    Lin, Yaguang
    Wan, Pengfei
    Min, Geyong
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (02): : 871 - 886
  • [27] Deep Learning-Enabled Diagnosis of Liver Adenocarcinoma
    Albrecht, Thomas
    Rossberg, Annik
    Albrecht, Jana Dorothea
    Nicolay, Jan Peter
    Straub, Beate Katharina
    Gerber, Tiemo Sven
    Albrecht, Michael
    Brinkmann, Fritz
    Charbel, Alphonse
    Schwab, Constantin
    Schreck, Johannes
    Brobeil, Alexander
    Flechtenmacher, Christa
    von Winterfeld, Moritz
    Koehler, Bruno Christian
    Springfeld, Christoph
    Mehrabi, Arianeb
    Singer, Stephan
    Vogel, Monika Nadja
    Neumann, Olaf
    Stenzinger, Albrecht
    Schirmacher, Peter
    Weis, Cleo-Aron
    Roessler, Stephanie
    Kather, Jakob Nikolas
    Goeppert, Benjamin
    GASTROENTEROLOGY, 2023, 165 (05) : 1262 - 1275
  • [28] Deep Learning for Gastric Pathology Detection in Endoscopic Images
    Khryashchev, V. V.
    Stepanova, O. A.
    Lebedev, A. A.
    Kashin, S., V
    Kuvaev, R. O.
    ICGSP '19 - PROCEEDINGS OF THE 2019 3RD INTERNATIONAL CONFERENCE ON GRAPHICS AND SIGNAL PROCESSING, 2019, : 90 - 94
  • [29] Deep learning-enabled automatic screening of SLE diseases and LR using OCT images
    Shiqun Lin
    Anum Masood
    Tingyao Li
    Gengyou Huang
    Rongping Dai
    The Visual Computer, 2023, 39 : 3259 - 3269
  • [30] Deep learning-enabled automatic screening of SLE diseases and LR using OCT images
    Lin, Shiqun
    Masood, Anum
    Li, Tingyao
    Huang, Gengyou
    Dai, Rongping
    VISUAL COMPUTER, 2023, 39 (08): : 3259 - 3269