Deep Learning-Enabled Technologies for Bioimage Analysis

被引:11
|
作者
Rabbi, Fazle [1 ]
Dabbagh, Sajjad Rahmani [1 ,2 ,3 ]
Angin, Pelin [4 ]
Yetisen, Ali Kemal [5 ]
Tasoglu, Savas [1 ,2 ,3 ,6 ,7 ]
机构
[1] Koc Univ, Dept Mech Engn, TR-34450 Istanbul, Turkey
[2] Koc Univ, Arcel Res Ctr Creat Ind KUAR, TR-34450 Istanbul, Turkey
[3] Koc Univ, Is Bank Artificial Intelligence Lab KUIS AILab, TR-34450 Istanbul, Turkey
[4] Middle East Tech Univ, Dept Comp Engn, TR-06800 Ankara, Turkey
[5] Imperial Coll London, Dept Chem Engn, London SW7 2AZ, England
[6] Bogazici Univ, Inst Biomed Engn, TR-34684 Istanbul, Turkey
[7] Max Planck Inst Intelligent Syst, Phys Intelligence Dept, D-70569 Stuttgart, Germany
关键词
deep learning; machine learning; bioimage quantification; cell morphology classification; cancer diagnosis; HIGH-THROUGHPUT; NEURAL-NETWORK; SINGLE-CELL; KIDNEY-DISEASE; EYE DISEASES; LABEL-FREE; LOW-COST; BIG DATA; CANCER; MODEL;
D O I
10.3390/mi13020260
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Deep learning (DL) is a subfield of machine learning (ML), which has recently demonstrated its potency to significantly improve the quantification and classification workflows in biomedical and clinical applications. Among the end applications profoundly benefitting from DL, cellular morphology quantification is one of the pioneers. Here, we first briefly explain fundamental concepts in DL and then we review some of the emerging DL-enabled applications in cell morphology quantification in the fields of embryology, point-of-care ovulation testing, as a predictive tool for fetal heart pregnancy, cancer diagnostics via classification of cancer histology images, autosomal polycystic kidney disease, and chronic kidney diseases.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Deep learning-enabled medical computer vision
    Esteva, Andre
    Chou, Katherine
    Yeung, Serena
    Naik, Nikhil
    Madani, Ali
    Mottaghi, Ali
    Liu, Yun
    Topol, Eric
    Dean, Jeff
    Socher, Richard
    [J]. NPJ DIGITAL MEDICINE, 2021, 4 (01)
  • [2] Deep Learning-Enabled Diagnosis of Liver Adenocarcinoma
    Albrecht, Thomas
    Rossberg, Annik
    Albrecht, Jana Dorothea
    Nicolay, Jan Peter
    Straub, Beate Katharina
    Gerber, Tiemo Sven
    Albrecht, Michael
    Brinkmann, Fritz
    Charbel, Alphonse
    Schwab, Constantin
    Schreck, Johannes
    Brobeil, Alexander
    Flechtenmacher, Christa
    von Winterfeld, Moritz
    Koehler, Bruno Christian
    Springfeld, Christoph
    Mehrabi, Arianeb
    Singer, Stephan
    Vogel, Monika Nadja
    Neumann, Olaf
    Stenzinger, Albrecht
    Schirmacher, Peter
    Weis, Cleo-Aron
    Roessler, Stephanie
    Kather, Jakob Nikolas
    Goeppert, Benjamin
    [J]. GASTROENTEROLOGY, 2023, 165 (05) : 1262 - 1275
  • [3] Efficient Deep Reinforcement Learning-Enabled Recommendation
    Pang, Guangyao
    Wang, Xiaoming
    Wang, Liang
    Hao, Fei
    Lin, Yaguang
    Wan, Pengfei
    Min, Geyong
    [J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (02): : 871 - 886
  • [4] Deep learning-enabled medical computer vision
    Andre Esteva
    Katherine Chou
    Serena Yeung
    Nikhil Naik
    Ali Madani
    Ali Mottaghi
    Yun Liu
    Eric Topol
    Jeff Dean
    Richard Socher
    [J]. npj Digital Medicine, 4
  • [5] On the objectivity, reliability, and validity of deep learning enabled bioimage analyses
    Segebarth, Dennis
    Griebel, Matthias
    Stein, Nikolai
    von Collenberg, Cora R.
    Martin, Corinna
    Fiedler, Dominik
    Comeras, Lucas B.
    Sah, Anupam
    Schoeffler, Victoria
    Lueffe, Teresa
    Duerr, Alexander
    Gupta, Rohini
    Sasi, Manju
    Lillesaar, Christina
    Lange, Maren D.
    Tasan, Ramon O.
    Singewald, Nicolas
    Pape, Hans-Christian
    Flath, Christoph M.
    Blum, Robert
    [J]. ELIFE, 2020, 9 : 1 - 36
  • [6] Deep learning-enabled anomaly detection for IoT systems
    Abusitta, Adel
    de Carvalho, Glaucio H. S.
    Wahab, Omar Abdel
    Halabi, Talal
    Fung, Benjamin C. M.
    Al Mamoori, Saja
    [J]. INTERNET OF THINGS, 2023, 21
  • [7] Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction
    Wang, En
    Zhang, Mijia
    Cheng, Xiaochun
    Yang, Yongjian
    Liu, Wenbin
    Yu, Huaizhi
    Wang, Liang
    Zhang, Jian
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (09) : 6170 - 6181
  • [8] A Novel Deep Learning-Enabled Physical Education Mechanism
    Wang, Weiqi
    Jiang, Jianan
    [J]. MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [9] Developing a Deep Learning-enabled Guide for the Visually Impaired
    Shelton, Allen
    Ogunfunmi, Tokunbo
    [J]. 2020 IEEE GLOBAL HUMANITARIAN TECHNOLOGY CONFERENCE (GHTC), 2020,
  • [10] DeepCell Kiosk: scaling deep learning-enabled cellular image analysis with Kubernetes
    Bannon, Dylan
    Moen, Erick
    Schwartz, Morgan
    Borba, Enrico
    Kudo, Takamasa
    Greenwald, Noah
    Vijayakumar, Vibha
    Chang, Brian
    Pao, Edward
    Osterman, Erik
    Graf, William
    Van Valen, David
    [J]. NATURE METHODS, 2021, 18 (01) : 43 - +