A Novel Deep Learning-Enabled Physical Education Mechanism

被引:1
|
作者
Wang, Weiqi [1 ]
Jiang, Jianan [2 ]
机构
[1] Fuyang Normal Univ, Fuyang 236041, Peoples R China
[2] Univ Sci & Technol LiaoNing, Anshan 114051, Liaoning, Peoples R China
关键词
RACE-WALKING;
D O I
10.1155/2022/8455164
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Race walking is one of the key events in the Tokyo Olympic Games, and also one of the strengths of China in athletics events. In recent years, China has made remarkable achievements in various race-walking competitions. However, with the improvement of the performance of race walkers, more and more technical problems have emerged, and the number of fouls due to nonstandard movements has increased significantly. It is a pity that athletes are disqualified for technical fouls in long-distance race-walking competitions. Therefore, it is necessary to introduce scientific training methods to help coaches strictly monitor the training process of athletes and accurately detect their standard degree of action in real-time. This paper mainly proposes a novel mechanism for foul recognition in race walking based on deep learning. Firstly, the image frames in the video are preprocessed by the Yolo algorithm to obtain the athletes' separated images. The U-Net network mixed with the attention mechanism is used to detect the athletes' actions to identify fouls and nonstandard actions, so as to assist the coach to identify the athletes' nonstandard actions in training and adjust them in time. Experiments show that the above method can identify the foul actions and nonstandard actions of multiple athletes in training at the same time quickly, and the recognition accuracy is higher than human eyes. It is more conducive to assist the coach to monitor and standardize the athletes' actions in the long-term training process, so as to reduce the error rate and improve the performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Deep learning-enabled medical computer vision
    Esteva, Andre
    Chou, Katherine
    Yeung, Serena
    Naik, Nikhil
    Madani, Ali
    Mottaghi, Ali
    Liu, Yun
    Topol, Eric
    Dean, Jeff
    Socher, Richard
    [J]. NPJ DIGITAL MEDICINE, 2021, 4 (01)
  • [2] Deep Learning-Enabled Diagnosis of Liver Adenocarcinoma
    Albrecht, Thomas
    Rossberg, Annik
    Albrecht, Jana Dorothea
    Nicolay, Jan Peter
    Straub, Beate Katharina
    Gerber, Tiemo Sven
    Albrecht, Michael
    Brinkmann, Fritz
    Charbel, Alphonse
    Schwab, Constantin
    Schreck, Johannes
    Brobeil, Alexander
    Flechtenmacher, Christa
    von Winterfeld, Moritz
    Koehler, Bruno Christian
    Springfeld, Christoph
    Mehrabi, Arianeb
    Singer, Stephan
    Vogel, Monika Nadja
    Neumann, Olaf
    Stenzinger, Albrecht
    Schirmacher, Peter
    Weis, Cleo-Aron
    Roessler, Stephanie
    Kather, Jakob Nikolas
    Goeppert, Benjamin
    [J]. GASTROENTEROLOGY, 2023, 165 (05) : 1262 - 1275
  • [3] Efficient Deep Reinforcement Learning-Enabled Recommendation
    Pang, Guangyao
    Wang, Xiaoming
    Wang, Liang
    Hao, Fei
    Lin, Yaguang
    Wan, Pengfei
    Min, Geyong
    [J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (02): : 871 - 886
  • [4] Deep learning-enabled medical computer vision
    Andre Esteva
    Katherine Chou
    Serena Yeung
    Nikhil Naik
    Ali Madani
    Ali Mottaghi
    Yun Liu
    Eric Topol
    Jeff Dean
    Richard Socher
    [J]. npj Digital Medicine, 4
  • [5] Deep Learning-Enabled Technologies for Bioimage Analysis
    Rabbi, Fazle
    Dabbagh, Sajjad Rahmani
    Angin, Pelin
    Yetisen, Ali Kemal
    Tasoglu, Savas
    [J]. MICROMACHINES, 2022, 13 (02)
  • [6] Deep learning-enabled anomaly detection for IoT systems
    Abusitta, Adel
    de Carvalho, Glaucio H. S.
    Wahab, Omar Abdel
    Halabi, Talal
    Fung, Benjamin C. M.
    Al Mamoori, Saja
    [J]. INTERNET OF THINGS, 2023, 21
  • [7] Deep Learning-Enabled Sparse Industrial Crowdsensing and Prediction
    Wang, En
    Zhang, Mijia
    Cheng, Xiaochun
    Yang, Yongjian
    Liu, Wenbin
    Yu, Huaizhi
    Wang, Liang
    Zhang, Jian
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (09) : 6170 - 6181
  • [8] Developing a Deep Learning-enabled Guide for the Visually Impaired
    Shelton, Allen
    Ogunfunmi, Tokunbo
    [J]. 2020 IEEE GLOBAL HUMANITARIAN TECHNOLOGY CONFERENCE (GHTC), 2020,
  • [9] Deep learning-enabled virtual histological staining of biological samples
    Bai, Bijie
    Yang, Xilin
    Li, Yuzhu
    Zhang, Yijie
    Pillar, Nir
    Ozcan, Aydogan
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2023, 12 (01)
  • [10] Deep Learning-Enabled Image Classification for the Determination of Aluminum Ions
    Wang, Ce
    Wang, Zhaoliang
    Lu, Yifei
    Hao, Tingting
    Hu, Yufang
    Wang, Sui
    Guo, Zhiyong
    [J]. JOURNAL OF ANALYTICAL CHEMISTRY, 2023, 78 (11) : 1502 - 1510