A Novel Deep Learning-Enabled Physical Education Mechanism

被引:1
|
作者
Wang, Weiqi [1 ]
Jiang, Jianan [2 ]
机构
[1] Fuyang Normal Univ, Fuyang 236041, Peoples R China
[2] Univ Sci & Technol LiaoNing, Anshan 114051, Liaoning, Peoples R China
关键词
RACE-WALKING;
D O I
10.1155/2022/8455164
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Race walking is one of the key events in the Tokyo Olympic Games, and also one of the strengths of China in athletics events. In recent years, China has made remarkable achievements in various race-walking competitions. However, with the improvement of the performance of race walkers, more and more technical problems have emerged, and the number of fouls due to nonstandard movements has increased significantly. It is a pity that athletes are disqualified for technical fouls in long-distance race-walking competitions. Therefore, it is necessary to introduce scientific training methods to help coaches strictly monitor the training process of athletes and accurately detect their standard degree of action in real-time. This paper mainly proposes a novel mechanism for foul recognition in race walking based on deep learning. Firstly, the image frames in the video are preprocessed by the Yolo algorithm to obtain the athletes' separated images. The U-Net network mixed with the attention mechanism is used to detect the athletes' actions to identify fouls and nonstandard actions, so as to assist the coach to identify the athletes' nonstandard actions in training and adjust them in time. Experiments show that the above method can identify the foul actions and nonstandard actions of multiple athletes in training at the same time quickly, and the recognition accuracy is higher than human eyes. It is more conducive to assist the coach to monitor and standardize the athletes' actions in the long-term training process, so as to reduce the error rate and improve the performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Deep Learning-Enabled Threat Intelligence Scheme in the Internet of Things Networks
    Al-Hawawreh, Muna
    Moustafa, Nour
    Garg, Sahil
    Hossain, M. Shamim
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2021, 8 (04): : 2968 - 2981
  • [42] Deep learning-enabled segmentation of ambiguous bioimages with deepflash2
    Matthias Griebel
    Dennis Segebarth
    Nikolai Stein
    Nina Schukraft
    Philip Tovote
    Robert Blum
    Christoph M. Flath
    Nature Communications, 14
  • [43] Novel Deep Learning-Enabled LSTM Autoencoder Architecture for Discovering Anomalous Events From Intelligent Transportation Systems
    Ashraf, Javed
    Bakhshi, Asim D.
    Moustafa, Nour
    Khurshid, Hasnat
    Javed, Abdullah
    Beheshti, Amin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (07) : 4507 - 4518
  • [44] Deep learning-enabled MCMC for probabilistic state estimation in district heating grids
    Bott, Andreas
    Janke, Tim
    Steinke, Florian
    APPLIED ENERGY, 2023, 336
  • [45] Deep learning-enabled intelligent process planning for digital twin manufacturing cell
    Zhang, Chao
    Zhou, Guanghui
    Hu, Junsheng
    Li, Jing
    KNOWLEDGE-BASED SYSTEMS, 2020, 191
  • [46] Deep Reinforcement Learning-Enabled Secure Visible Light Communication Against Eavesdropping
    Xiao, Liang
    Sheng, Geyi
    Liu, Sicong
    Dai, Huaiyu
    Peng, Mugen
    Song, Jian
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (10) : 6994 - 7005
  • [47] Machine learning-enabled retrobiosynthesis of molecules
    Yu, Tianhao
    Boob, Aashutosh Girish
    Volk, Michael J.
    Liu, Xuan
    Cui, Haiyang
    Zhao, Huimin
    NATURE CATALYSIS, 2023, 6 (2) : 137 - 151
  • [48] Adversarial examples: A survey of attacks and defenses in deep learning-enabled cybersecurity systems
    Macas, Mayra
    Wu, Chunming
    Fuertes, Walter
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [49] Intelligent deep learning-enabled autonomous small ship detection and classification model
    Escorcia-Gutierrez, Jose
    Gamarra, Margarita
    Beleno, Kelvin
    Soto, Carlos
    Mansour, Romany F.
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
  • [50] Deep learning-enabled quantification of simultaneous PET/MRI for cell transplantation monitoring
    Hayat, Hasaan
    Wang, Rui
    Sun, Aixia
    Mallett, Christiane L.
    Nigam, Saumya
    Redman, Nathan
    Bunn, Demarcus
    Gjelaj, Elvira
    Talebloo, Nazanin
    Alessio, Adam
    Moore, Anna
    Zinn, Kurt
    Wei, Guo-Wei
    Fan, Jinda
    Wang, Ping
    ISCIENCE, 2023, 26 (07)