Hard-wired lattice light-sheet microscopy for imaging of expanded samples

被引:4
|
作者
Stockhausen, Anne [1 ]
Buergers, Jana [1 ]
Rodriguez-Gatica, Juan Eduardo [1 ]
Schweihoff, Jens [2 ]
Merkel, Rudolf [3 ]
Prigge, Jens Markus [4 ]
Schwarz, Martin Karl [2 ]
Kubitscheck, Ulrich [1 ]
机构
[1] Univ Bonn, Inst Phys & Theoret Chem, Wegelerstr 12, D-53115 Bonn, Germany
[2] Univ Bonn Med Sch, Inst Expt Epileptol & Cognit Res EECR, Sigmund Freud Str 25, D-53127 Bonn, Germany
[3] Forschungszentrum Julich, Inst Biol Informat Proc 2 Mechanobiol, D-52425 Julich, Germany
[4] Forschungszentrum Julich, Inst Biol Informat Proc Mech Workshop, D-52425 Julich, Germany
来源
OPTICS EXPRESS | 2020年 / 28卷 / 10期
关键词
D O I
10.1364/OE.393728
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Light-sheet fluorescence microscopy (LSFM) helps investigate small structures in developing cells and tissue for three-dimensional localization microscopy and large-field brain imaging in neuroscience. Lattice light-sheet microscopy is a recent development with great potential to improve axial resolution and usable field sizes, thus improving imaging speed. In contrast to the commonly employed Gaussian beams for light-sheet generation in conventional LSFM, in lattice light-sheet microscopy an array of low diverging Bessel beams with a suppressed side lobe structure is used. We developed a facile elementary lattice light-sheet microscope using a micro-fabricated fixed ring mask for lattice light-sheet generation. In our setup, optical hardware elements enable a stable and simple illumination path without the need for spatial light modulators. This setup, in combination with long-working distance objectives and the possibility for simultaneous dual-color imaging, provides optimal conditions for imaging extended optically cleared tissue samples. We here present experimental data of fluorescently stained neurons and neurites from mouse hippocampus following tissue expansion and demonstrate the high homogeneous resolution throughout the entire imaged volume. Utilizing our purpose-built lattice light-sheet microscope, we reached a homogeneous excitation and an axial resolution of 1.2 mu m over a field of view of (333 mu m)(2). (c) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:15587 / 15600
页数:14
相关论文
共 50 条
  • [42] Applications of Light-Sheet Microscopy in Microdevices
    Albert-Smet, Ignacio
    Marcos-Vidal, Asier
    Jose Vaquero, Juan
    Desco, Manuel
    Munoz-Barrutia, Arrate
    Ripoll, Jorge
    FRONTIERS IN NEUROANATOMY, 2019, 13
  • [43] Light-sheet microscopy at high resolution
    Reto Fiolka
    Nature Biotechnology, 2021, 39 : 1345 - 1346
  • [44] Resolution upgrades for light-sheet microscopy
    Fiolka, Reto
    NATURE METHODS, 2019, 16 (09) : 813 - 814
  • [45] Resolution upgrades for light-sheet microscopy
    Reto Fiolka
    Nature Methods, 2019, 16 : 813 - 814
  • [46] Computational hyperspectral light-sheet microscopy
    Crombez, S.
    Leclerc, P.
    Ray, C.
    Ducros, N.
    OPTICS EXPRESS, 2022, 30 (04) : 4856 - 4866
  • [47] Confocal multiview light-sheet microscopy
    Gustavo de Medeiros
    Nils Norlin
    Stefan Gunther
    Marvin Albert
    Laura Panavaite
    Ulla-Maj Fiuza
    Francesca Peri
    Takashi Hiiragi
    Uros Krzic
    Lars Hufnagel
    Nature Communications, 6
  • [48] Meta-lens light-sheet fluorescence microscopy for in vivo imaging
    Luo, Yuan
    Tseng, Ming Lun
    Vyas, Sunil
    Hsieh, Ting-Yu
    Wu, Jui-Ching
    Chen, Shang-Yang
    Peng, Hsiao-Fang
    Su, Vin-Cent
    Huang, Tzu-Ting
    Kuo, Hsin Yu
    Chu, Cheng Hung
    Chen, Mu Ku
    Chen, Jia-Wern
    Chen, Yu-Chun
    Huang, Kuang-Yuh
    Kuan, Chieh-Hsiung
    Shi, Xu
    Misawa, Hiroaki
    Tsai, Din Ping
    NANOPHOTONICS, 2022, 11 (09) : 1949 - 1959
  • [49] Expansion and Light-Sheet Microscopy for Nanoscale 3D Imaging
    Pesce, Luca
    Ricci, Pietro
    Sportelli, Giancarlo
    Belcari, Nicola
    Sancataldo, Giuseppe
    SMALL METHODS, 2024, 8 (10)
  • [50] Imaging Enhancement of Light-Sheet Fluorescence Microscopy via Deep Learning
    Bai, Chen
    Liu, Chao
    Yu, Xianghua
    Peng, Tong
    Min, Junwei
    Yan, Shaohui
    Dan, Dan
    Yao, Baoli
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2019, 31 (22) : 1803 - 1806