Imaging Enhancement of Light-Sheet Fluorescence Microscopy via Deep Learning

被引:20
|
作者
Bai, Chen [1 ]
Liu, Chao [1 ]
Yu, Xianghua [1 ]
Peng, Tong [1 ]
Min, Junwei [1 ]
Yan, Shaohui [1 ]
Dan, Dan [1 ]
Yao, Baoli [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710068, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural networks; residual learning; light-sheet fluorescence microscopy;
D O I
10.1109/LPT.2019.2948030
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The complementary beam subtraction (CBS) method can reduce the out-of-focus background and improve the axial resolution in light-sheet fluorescence microscopy (LSFM) via double scanning a Bessel and the complementary beams. With the assistance of a compressed blind deconvolution and denoising (CBDD) algorithm, the noise and blurring incurred during CBS imaging can be further removed. However, this approach requires double scanning and large computational cost. Here, we propose a deep learning-based method for LSFM, which can reconstruct high-quality images directly from the conventional Bessel beam (BB) light-sheet via a single scan. The image quality achievable with this CBS-Deep method is competitive with or better than the CBS-CBDD method, while the speed of image reconstruction is about 100 times faster. Accordingly, the proposed method can significantly improve the practicality of the CBS-CBDD system by reducing both scanning behavior and reconstruction time. The results show that this cost-effective and convenient method enables high-quality LSFM techniques to be developed and applied.
引用
收藏
页码:1803 / 1806
页数:4
相关论文
共 50 条
  • [1] A guide to light-sheet fluorescence microscopy for multiscale imaging
    Rory M Power
    Jan Huisken
    [J]. Nature Methods, 2017, 14 : 360 - 373
  • [2] Imaging the Aging Cochlea with Light-Sheet Fluorescence Microscopy
    Santi, Peter A.
    Johnson, Shane B.
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2022, (187):
  • [3] Intelligent Beam Optimization for Light-Sheet Fluorescence Microscopy through Deep Learning
    Li, Chen
    Rai, Mani Ratnam
    Cai, Yuheng
    Ghashghaei, H. Troy
    Greenbaum, Alon
    [J]. Intelligent Computing, 2024, 3
  • [4] A guide to light-sheet fluorescence microscopy for multiscale imaging
    Power, Rory M.
    Huisken, Jan
    [J]. NATURE METHODS, 2017, 14 (04) : 360 - 373
  • [5] Multimodal light-sheet microscopy for fluorescence live imaging
    Oshima, Y.
    Kajiura-Kobayashi, H.
    Nonaka, S.
    [J]. THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING XIX, 2012, 8227
  • [6] Multiscale imaging of plant development by light-sheet fluorescence microscopy
    Ovecka, Miroslav
    von Wangenheim, Daniel
    Tomancak, Pavel
    Samajova, Olga
    Komis, George
    Samaj, Jozef
    [J]. NATURE PLANTS, 2018, 4 (09) : 639 - 650
  • [7] Multiscale imaging of plant development by light-sheet fluorescence microscopy
    Miroslav Ovečka
    Daniel von Wangenheim
    Pavel Tomančák
    Olga Šamajová
    George Komis
    Jozef Šamaj
    [J]. Nature Plants, 2018, 4 : 639 - 650
  • [8] Meta-lens light-sheet fluorescence microscopy for in vivo imaging
    Luo, Yuan
    Tseng, Ming Lun
    Vyas, Sunil
    Hsieh, Ting-Yu
    Wu, Jui-Ching
    Chen, Shang-Yang
    Peng, Hsiao-Fang
    Su, Vin-Cent
    Huang, Tzu-Ting
    Kuo, Hsin Yu
    Chu, Cheng Hung
    Chen, Mu Ku
    Chen, Jia-Wern
    Chen, Yu-Chun
    Huang, Kuang-Yuh
    Kuan, Chieh-Hsiung
    Shi, Xu
    Misawa, Hiroaki
    Tsai, Din Ping
    [J]. NANOPHOTONICS, 2022, 11 (09) : 1949 - 1959
  • [9] Functional in vivo imaging using fluorescence lifetime light-sheet microscopy
    Mitchell, Claire A.
    Poland, Simon P.
    Seyforth, James
    Nedbal, Jakub
    Gelot, Thomas
    Huq, Tahiyat
    Holst, Gerhard
    Knight, Robert D.
    Ameer-Beg, Simon M.
    [J]. OPTICS LETTERS, 2017, 42 (07) : 1269 - 1272
  • [10] Three Dimensional Fluorescence Imaging Using Multiple Light-Sheet Microscopy
    Mohan, Kavya
    Purnapatra, Subhajit B.
    Mondal, Partha Pratim
    [J]. PLOS ONE, 2014, 9 (06):