Design of microstructures and structures with negative linear compressibility in certain directions

被引:20
|
作者
Weng, C. N. [1 ]
Wang, K. T. [1 ]
Chen, T. [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Civil Engn, Tainan 70101, Taiwan
关键词
negative linear compressibility; design of material; stretch-densified;
D O I
10.4028/www.scientific.net/AMR.33-37.807
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The linear compressibility of a solid is defined as the relative decrease in length of a line when the solid is subjected to unit hydrostatic pressure. Materials with a negative linear or area compressibility, could have interesting technological applications. However, in the case of homogeneous materials only rare crystal phases exhibit this effect. In particular, for isotropic or cubic solids the linear compressibility is known to be isotropic and positive, namely a sphere of a cubic or isotropic crystal under hydrostatic pressure remains a sphere. For less symmetric solids, it generally varies with the direction n. Here we derive explicit expressions of the stationary values (maximum and minimum) of linear compressibility for single phase solids with monoclinic, orthotropic, tetragonal, trigonal, and hexagonal symmetry. A list of crystals that may exhibit negative linear compressibility in certain directions is outlined. Next, by assembling a two-cornponent material, we propose microstructure networks to achieve such a property. Numerical simulations, based on a refined finite element method, are provided.
引用
收藏
页码:807 / 813
页数:7
相关论文
共 50 条
  • [31] Negative linear compressibility in a crystal of α-BiB3O6
    Lei Kang
    Xingxing Jiang
    Siyang Luo
    Pifu Gong
    Wei Li
    Xiang Wu
    Yanchun Li
    Xiaodong Li
    Chuangtian Chen
    Zheshuai Lin
    Scientific Reports, 5
  • [32] Negative linear compressibility in a crystal of α-BiB3O6
    Kang, Lei
    Jiang, Xingxing
    Luo, Siyang
    Gong, Pifu
    Li, Wei
    Wu, Xiang
    Li, Yanchun
    Li, Xiaodong
    Chen, Chuangtian
    Lin, Zheshuai
    SCIENTIFIC REPORTS, 2015, 5
  • [33] Optimal design of periodic linear elastic microstructures
    Neves, MM
    Rodrigues, H
    Guedes, JM
    COMPUTERS & STRUCTURES, 2000, 76 (1-3) : 421 - 429
  • [34] Negative Linear Compressibility and Massive Anisotropic Thermal Expansion in Methanol Monohydrate
    Fortes, A. Dominic
    Suard, Emmanuelle
    Knight, Kevin S.
    SCIENCE, 2011, 331 (6018) : 742 - 746
  • [35] Large negative linear compressibility of a porous molecular co-crystal
    Sobczak, Szymon
    Polrolniczak, Aleksandra
    Ratajczyk, Paulina
    Cai, Weizhao
    Gladysiak, Andrzej
    Nikolayenko, Varvara, I
    Castell, Dominic C.
    Barbour, Leonard J.
    Katrusiak, Andrzej
    CHEMICAL COMMUNICATIONS, 2020, 56 (31) : 4324 - 4327
  • [36] Negative Linear Compressibility in the Elastically Flexible Crystal of Copper(II) Acetylacetonate
    Liu, Yu
    Fu, Boyang
    He, Weilong
    Qiu, Wenbo
    Ren, Xiangting
    Zhao, Panfeng
    Cai, Weizhao
    CRYSTAL GROWTH & DESIGN, 2025, 25 (05) : 1423 - 1431
  • [37] Abnormal compression behavior with unexpected negative linear compressibility of γ-AlOOH nanotubes
    Xing, Xuhong
    Wei, Ziqin
    Jiang, Lina
    Zhang, Jian
    Luo, Yaxiao
    Ma, Yanmei
    Cui, Qiliang
    APPLIED PHYSICS LETTERS, 2024, 125 (09)
  • [38] Microstructures by design: linear problems in elastic-plastic design
    Adams, BL
    Lyon, M
    Henrie, B
    INTERNATIONAL JOURNAL OF PLASTICITY, 2004, 20 (8-9) : 1577 - 1602
  • [39] Three-dimensional cellular structures with negative Poisson's ratio and negative compressibility properties
    Grima, Joseph N.
    Caruana-Gauci, Roberto
    Attard, Daphne
    Gatt, Ruben
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2146): : 3121 - 3138
  • [40] Large negative linear compressibility of Ag3[Co(CN)6]
    Goodwin, Andrew L.
    Keen, David A.
    Tucker, Matthew G.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (48) : 18708 - 18713