Design of microstructures and structures with negative linear compressibility in certain directions

被引:20
|
作者
Weng, C. N. [1 ]
Wang, K. T. [1 ]
Chen, T. [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Civil Engn, Tainan 70101, Taiwan
关键词
negative linear compressibility; design of material; stretch-densified;
D O I
10.4028/www.scientific.net/AMR.33-37.807
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The linear compressibility of a solid is defined as the relative decrease in length of a line when the solid is subjected to unit hydrostatic pressure. Materials with a negative linear or area compressibility, could have interesting technological applications. However, in the case of homogeneous materials only rare crystal phases exhibit this effect. In particular, for isotropic or cubic solids the linear compressibility is known to be isotropic and positive, namely a sphere of a cubic or isotropic crystal under hydrostatic pressure remains a sphere. For less symmetric solids, it generally varies with the direction n. Here we derive explicit expressions of the stationary values (maximum and minimum) of linear compressibility for single phase solids with monoclinic, orthotropic, tetragonal, trigonal, and hexagonal symmetry. A list of crystals that may exhibit negative linear compressibility in certain directions is outlined. Next, by assembling a two-cornponent material, we propose microstructure networks to achieve such a property. Numerical simulations, based on a refined finite element method, are provided.
引用
收藏
页码:807 / 813
页数:7
相关论文
共 50 条
  • [21] Large Negative Linear Compressibility Triggered by Hydrogen Bonding
    Szafranski, Marek
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (21): : 11631 - 11638
  • [22] Negative linear compressibility of hexagonal honeycombs and related systems
    Grima, Joseph N.
    Attard, Daphne
    Caruana-Gauci, Roberto
    Gatt, Ruben
    SCRIPTA MATERIALIA, 2011, 65 (07) : 565 - 568
  • [23] Negative linear compressibility from rotating rigid units
    Attard, Daphne
    Caruana-Gauci, Roberto
    Gatt, Ruben
    Grima, Joseph N.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2016, 253 (07): : 1410 - 1418
  • [24] A non-topological mechanism for negative linear compressibility
    Binns, Jack
    Kamenev, Konstantin V.
    Marriott, Katie E. R.
    McIntyre, Garry J.
    Moggach, Stephen A.
    Murrie, Mark
    Parsons, Simon
    CHEMICAL COMMUNICATIONS, 2016, 52 (47) : 7486 - 7489
  • [25] Colossal Negative Linear Compressibility in Porous Organic Salts
    Zhao, Yu
    Fan, Changzeng
    Pei, Cuiying
    Geng, Xu
    Xing, Guolong
    Ben, Teng
    Qiu, Shilun
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (07) : 3593 - 3599
  • [26] Negative linear compressibility of generic rotating rigid triangles
    Zhou, Xiao-Qin
    Zhang, Lei
    Yang, Lu
    CHINESE PHYSICS B, 2017, 26 (12)
  • [27] Negative linear compressibility of molecular and ionic-molecular crystals
    Korabel'nikov, Dmitry V.
    Fedorov, Igor A.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2025, 27 (04) : 2232 - 2239
  • [28] Hidden negative linear compressibility in lithium L-tartrate
    Yeung, Hamish H. -M.
    Kilmurray, Rebecca
    Hobday, Claire L.
    McKellar, Scott C.
    Cheetham, Anthony K.
    Allan, David R.
    Moggach, Stephen A.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (05) : 3544 - 3549
  • [29] 2D Structures Exhibiting Negative Area Compressibility
    Lim, Teik-Cheng
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2017, 254 (12):
  • [30] Negative linear compressibility and unusual dynamic behavior of NaB3
    He, Xin-Ling
    Pan, Shu-Ning
    Chen, Yue
    Weng, Xiao-Ji
    Wang, Zifan
    Yu, Dongli
    Dong, Xiao
    Sun, Jian
    Tian, Yongjun
    Zhou, Xiang-Feng
    PHYSICAL REVIEW MATERIALS, 2021, 5 (03)