Design of microstructures and structures with negative linear compressibility in certain directions

被引:20
|
作者
Weng, C. N. [1 ]
Wang, K. T. [1 ]
Chen, T. [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Civil Engn, Tainan 70101, Taiwan
关键词
negative linear compressibility; design of material; stretch-densified;
D O I
10.4028/www.scientific.net/AMR.33-37.807
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The linear compressibility of a solid is defined as the relative decrease in length of a line when the solid is subjected to unit hydrostatic pressure. Materials with a negative linear or area compressibility, could have interesting technological applications. However, in the case of homogeneous materials only rare crystal phases exhibit this effect. In particular, for isotropic or cubic solids the linear compressibility is known to be isotropic and positive, namely a sphere of a cubic or isotropic crystal under hydrostatic pressure remains a sphere. For less symmetric solids, it generally varies with the direction n. Here we derive explicit expressions of the stationary values (maximum and minimum) of linear compressibility for single phase solids with monoclinic, orthotropic, tetragonal, trigonal, and hexagonal symmetry. A list of crystals that may exhibit negative linear compressibility in certain directions is outlined. Next, by assembling a two-cornponent material, we propose microstructure networks to achieve such a property. Numerical simulations, based on a refined finite element method, are provided.
引用
收藏
页码:807 / 813
页数:7
相关论文
共 50 条
  • [1] Design and fabrication of materials and structures with negative Poisson's ratio and negative linear compressibility
    Ghaedizadeh, Arash
    Shen, Jianhu
    Ren, Xin
    Xie, Yi Min
    BEHAVIOR AND MECHANICS OF MULTIFUNCTIONAL MATERIALS AND COMPOSITES 2017, 2017, 10165
  • [2] Modelling negative linear compressibility in tetragonal beam structures
    Barnes, D. L.
    Miller, W.
    Evans, K. E.
    Marmier, A.
    MECHANICS OF MATERIALS, 2012, 46 : 123 - 128
  • [3] A hybrid approach to design materials with negative linear compressibility
    Faramarzi, Asaad
    Alani, Amir M.
    Harireche, Ouahid
    COMPUTATIONAL MATERIALS SCIENCE, 2013, 79 : 971 - 976
  • [4] Negative linear compressibility
    Cairns, Andrew B.
    Goodwin, Andrew L.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (32) : 20449 - 20465
  • [5] Designing composites with negative linear compressibility
    Ghaedizadeh, Arash
    Shen, Jianhu
    Ren, Xin
    Xie, Yi Min
    MATERIALS & DESIGN, 2017, 131 : 343 - 357
  • [6] Negative linear compressibility in common materials
    Miller, W.
    Evans, K. E.
    Marmier, A.
    APPLIED PHYSICS LETTERS, 2015, 106 (23)
  • [7] Negative Linear Compressibility of Nickel Dicyanamide
    Fan, Xufeng
    Yan, Tingting
    Wang, Qingjie
    Zheng, Jungang
    Ma, Zhenning
    Xue, Zhichao
    CHEMISTRY LETTERS, 2019, 48 (11) : 1375 - 1378
  • [8] NEGATIVE LINEAR COMPRESSIBILITY Giant response
    Gatt, Ruben
    Caruana-Gauci, Roberto
    Grima, Joseph N.
    NATURE MATERIALS, 2013, 12 (03) : 182 - 183
  • [9] Giant negative linear compressibility in zinc dicyanoaurate
    Cairns, Andrew B.
    Catafesta, Jadna
    Levelut, Claire
    Rouquette, Jerome
    van der Lee, Arie
    Peters, Lars
    Thompson, Amber L.
    Dmitriev, Vladimir
    Haines, Julien
    Goodwin, Andrew L.
    NATURE MATERIALS, 2013, 12 (03) : 212 - 216
  • [10] Nano networks exhibiting negative linear compressibility
    Grima, Joseph N.
    Degabriele, Edera P.
    Attard, Daphne
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2016, 253 (07): : 1419 - 1427