Controllability of mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces

被引:49
|
作者
Chang, Y. -K. [1 ]
Chalishajar, D. N. [2 ]
机构
[1] Lanzhou Jiaotong Univ, Dept Math, Lanzhou 730070, Peoples R China
[2] Gujarat Univ, Dept Appl Math, Sardar Vallabhbhai Patel Inst Technol, Anand 388306, Gujarat, India
关键词
controllability; mixed Volterra-Fredholm-type integro-differential inclusions; Bohnenblust-Karlin's fixed point theorem;
D O I
10.1016/j.jfranklin.2008.02.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper establishes a sufficient condition for the controllability of semilinear mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces. We use Bohnenblust-Karlin's fixed point theorem combined with a strongly continuous operator semigroup. Our main condition (A5) only depends upon the local properties of multivalued map on a bounded set. An example is also given to illustrate our main results. (C) 2008 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:499 / 507
页数:9
相关论文
共 50 条
  • [1] Controllability of mixed Volterra-Fredholm-type integro-differential systems in Banach space
    Chalishajar, D. N.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2007, 344 (01): : 12 - 21
  • [2] Controllability of second-order differential and integro-differential inclusions in Banach spaces
    Chang, Y. K.
    Li, W. T.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 129 (01) : 77 - 87
  • [3] Controllability of Second-Order Differential and Integro-Differential Inclusions in Banach Spaces
    Y. K. Chang
    W. T. Li
    Journal of Optimization Theory and Applications, 2006, 129 : 77 - 87
  • [4] Controllability of Volterra-Fredholm type systems in Banach spaces
    Hernandez, Eduardo
    O'Regan, Donal
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2009, 346 (02): : 95 - 101
  • [5] Fractional Linear Volterra Integro-Differential Equations in Banach Spaces
    Ilolov M.I.
    Journal of Mathematical Sciences, 2022, 268 (1) : 56 - 62
  • [6] Second order integro-differential equations of Volterra type on unbounded domains in Banach spaces
    Guo, D
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (3-4) : 465 - 476
  • [7] Existence and controllability results for neutral fractional Volterra-Fredholm integro-differential equations
    Gunasekar, Tharmalingam
    Raghavendran, Prabakaran
    Santra, Shyam Sundar
    Sajid, Mohammad
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 34 (04): : 361 - 380
  • [8] Controllability of Impulsive Fractional Functional Integro-Differential Equations in Banach Spaces
    Ravichandran, C.
    Trujillo, J. J.
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [9] Positive Solutions for Nonlinear Integro-Differential Equations of Mixed Type in Banach Spaces
    Sun, Yan
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [10] Abstract Impulsive Volterra Integro-Differential Inclusions
    Du, Wei-Shih
    Kostic, Marko
    Velinov, Daniel
    FRACTAL AND FRACTIONAL, 2023, 7 (01)