Controllability of mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces

被引:49
|
作者
Chang, Y. -K. [1 ]
Chalishajar, D. N. [2 ]
机构
[1] Lanzhou Jiaotong Univ, Dept Math, Lanzhou 730070, Peoples R China
[2] Gujarat Univ, Dept Appl Math, Sardar Vallabhbhai Patel Inst Technol, Anand 388306, Gujarat, India
关键词
controllability; mixed Volterra-Fredholm-type integro-differential inclusions; Bohnenblust-Karlin's fixed point theorem;
D O I
10.1016/j.jfranklin.2008.02.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper establishes a sufficient condition for the controllability of semilinear mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces. We use Bohnenblust-Karlin's fixed point theorem combined with a strongly continuous operator semigroup. Our main condition (A5) only depends upon the local properties of multivalued map on a bounded set. An example is also given to illustrate our main results. (C) 2008 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:499 / 507
页数:9
相关论文
共 50 条
  • [31] A series solution of the nonlinear Volterra and Fredholm integro-differential equations
    Shidfar, A.
    Molabahrami, A.
    Babaei, A.
    Yazdanian, A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (02) : 205 - 215
  • [32] Novel algorithms to approximate the solution of nonlinear integro-differential equations of Volterra-Fredholm integro type
    HamaRashid, Hawsar
    Srivastava, Hari Mohan
    Hama, Mudhafar
    Mohammed, Pshtiwan Othman
    Almusawa, Musawa Yahya
    Baleanu, Dumitru
    AIMS MATHEMATICS, 2023, 8 (06): : 14572 - 14591
  • [33] PERIODIC BOUNDARY VALUE PROBLEMS FOR IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS OF MIXED TYPE IN BANACH SPACES
    LIU XINZHI
    (Department of Applied Mathematics
    (Department of Mathematics
    Chinese Annals of Mathematics,Series B, 1998, (04) : 517 - 528
  • [34] Periodic boundary value problems for impulsive integro-differential equations of mixed type in Banach spaces
    Liu, XZ
    Guo, DJ
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1998, 19 (04) : 517 - 528
  • [35] Solutions of the second order nonlinear impulsive integro-differential equations of mixed type in Banach spaces
    Liu, LS
    Zhang, XY
    Cho, YJ
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2003, 10 (04): : 549 - 562
  • [36] Exact Controllability Results for Sobolev-Type Hilfer Fractional Neutral Delay Volterra-Fredholm Integro-Differential Systems
    Vijayakumar, Velusamy
    Aldosary, Saud Fahad
    Nisar, Kottakkaran Sooppy
    FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [37] An ultraspherical spectral method for linear Fredholm and Volterra integro-differential equations of convolution type
    Hale, Nicholas
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (04) : 1727 - 1746
  • [38] On a nonlinear integro-differential equation of Fredholm type
    Bounaya, Mohammed Charif
    Lemita, Samir
    Ghiat, Mourad
    Aissaoui, Mohamed Zine
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2021, 13 (02) : 194 - 205
  • [39] Mild Solution of Second-Order Impulsive Integro-Differential Evolution Equations of Volterra Type in Banach Spaces
    Xinan Hao
    Lishan Liu
    Qualitative Theory of Dynamical Systems, 2020, 19
  • [40] ON CONTROLLABILITY FOR FRACTIONAL DIFFERENTIAL INCLUSIONS IN BANACH SPACES
    Wang, JinRong
    Li, XueZhu
    Wei, Wei
    OPUSCULA MATHEMATICA, 2012, 32 (02) : 341 - 356