Prediction of depression cases, incidence, and chronicity in a large occupational cohort using machine learning techniques: an analysis of the ELSA-Brasil study

被引:15
|
作者
Librenza-Garcia, Diego [1 ,2 ,3 ]
Passos, Ives Cavalcante [1 ,2 ]
Feiten, Jacson Gabriel [1 ,2 ]
Lotufo, Paulo A. [4 ,5 ]
Goulart, Alessandra C. [4 ,5 ]
de Souza Santos, Itamar [4 ,5 ]
Viana, Maria Carmen [6 ]
Bensenor, Isabela M. [4 ,5 ]
Brunoni, Andre Russowsky [4 ,5 ,7 ]
机构
[1] Hosp Clin Porto Alegre, Lab Mol Psychiat, Porto Alegre, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Programa Posgrad Psiquiatria & Ciencias Comportam, Porto Alegre, RS, Brazil
[3] McMaster Univ, Dept Psychiat & Behav Neurosci, Hamilton, ON, Canada
[4] Univ Sao Paulo, Dept Internal Med, Fac Med, Sao Paulo, Brazil
[5] Univ Sao Paulo, Univ Hosp, Sao Paulo, Brazil
[6] Univ Fed Espirito Santo, Dept Social Med, Postgrad Program Publ Hlth, Ctr Psychiat Epidemiol CEPEP, Vitoria, ES, Brazil
[7] Univ Sao Paulo, Dept & Inst Psychiat, Lab Neurosci LIM 27, Fac Med, Sao Paulo, Brazil
关键词
Incident depression; machine learning; major depressive disorder; prognosis; COMMON MENTAL-DISORDERS; GENERAL-POPULATION; GENDER-DIFFERENCES; CLASS IMBALANCE; RISK; QUESTIONNAIRE; DETERMINANTS; SYMPTOMS; PATTERNS; DISEASE;
D O I
10.1017/S0033291720001579
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Background. Depression is highly prevalent and marked by a chronic and recurrent course. Despite being a major cause of disability worldwide, little is known regarding the determinants of its heterogeneous course. Machine learning techniques present an opportunity to develop tools to predict diagnosis and prognosis at an individual level. Methods. We examined baseline (2008-2010) and follow-up (2012-2014) data of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), a large occupational cohort study. We implemented an elastic net regularization analysis with a 10-fold cross-validation procedure using socioeconomic and clinical factors as predictors to distinguish at follow-up: (1) depressed from non-depressed participants, (2) participants with incident depression from those who did not develop depression, and (3) participants with chronic (persistent or recurrent) depression from those without depression. Results. We assessed 15 105 and 13 922 participants at waves 1 and 2, respectively. The elastic net regularization model distinguished outcome levels in the test dataset with an area under the curve of 0.79 (95% CI 0.76-0.82), 0.71 (95% CI 0.66-0.77), 0.90 (95% CI 0.86-0.95) for analyses 1, 2, and 3, respectively. Conclusions. Diagnosis and prognosis related to depression can be predicted at an individual subject level by integrating low-cost variables, such as demographic and clinical data. Future studies should assess longer follow-up periods and combine biological predictors, such as genetics and blood biomarkers, to build more accurate tools to predict depression course.
引用
收藏
页码:2895 / 2903
页数:9
相关论文
共 50 条
  • [1] Comparing machine learning algorithms for multimorbidity prediction: An example from the Elsa-Brasil study
    Paula, Daniela Polessa
    Aguiar, Odaleia Barbosa
    Marques, Larissa Pruner
    Bensenor, Isabela
    Suemoto, Claudia Kimie
    Mendes da Fonseca, Maria de Jesus
    Griep, Rosane Harter
    PLOS ONE, 2022, 17 (10):
  • [2] Socio-demographic and psychiatric risk factors in incident and persistent depression: An analysis in the occupational cohort of ELSA-Brasil
    Brunoni, Andre R.
    Santos, Itamar S.
    Passos, Ives C.
    Goulart, Alessandra C.
    Koyanagi, Ai
    Carvalho, Andre F.
    Barreto, Sandhi M.
    Viana, Maria Carmen
    Lotufo, Paulo A.
    Bensenor, Isabela M.
    JOURNAL OF AFFECTIVE DISORDERS, 2020, 263 : 252 - 257
  • [3] Association between ideal cardiovascular health and depression incidence: a longitudinal analysis of ELSA-Brasil
    Brunoni, A. R.
    Szlejf, C.
    Suemoto, C. K.
    Santos, I. S.
    Goulart, A. C.
    Viana, M. C.
    Koyanagi, A.
    Barreto, S. M.
    Moreno, A. B.
    Carvalho, A. F.
    Lange, S.
    Griep, R. H.
    Lotufo, P. A.
    Bensenor, I. M.
    ACTA PSYCHIATRICA SCANDINAVICA, 2019, 140 (06) : 552 - 562
  • [4] Depression is a risk factor for metabolic syndrome: Results from the ELSA-Brasil cohort study
    Ferriani, Lara Onofre
    Silva, Daniela Alves
    Molina, Maria del Carmen Bisi
    Mill, Jose Geraldo
    Brunoni, Andre Russowsky
    da Fonseca, Maria de Jesus Mendes
    Moreno, Arlinda B.
    Bensenor, Isabela M.
    de Aguiar, Odaleia Barbosa
    Barreto, Sandhi Maria
    Viana, Maria Carmen
    JOURNAL OF PSYCHIATRIC RESEARCH, 2023, 158 : 56 - 62
  • [5] Intermediate hyperglycaemia to predict progression to type 2 diabetes (ELSA-Brasil): an occupational cohort study in Brazil
    Schmidt, Maria Ines
    Bracco, Paula A.
    Yudkin, John S.
    Bensenor, Isabela M.
    Griep, Rosane Harter
    Barreto, Sandhi Maria
    Castilhos, Cristina D.
    Duncan, Bruce B.
    LANCET DIABETES & ENDOCRINOLOGY, 2019, 7 (04): : 267 - 277
  • [6] Sex and population differences in the cardiometabolic continuum: a machine learning study using the UK Biobank and ELSA-Brasil cohorts
    Paula, Daniela Polessa
    Camacho, Marina
    Barbosa, Odaleia
    Marques, Larissa
    Griep, Rosane Harter
    da Fonseca, Maria Jesus Mendes
    Barreto, Sandhi
    Lekadir, Karim
    BMC PUBLIC HEALTH, 2024, 24 (01)
  • [7] Clustering analysis and machine learning algorithms in the prediction of dietary patterns: Cross-sectional results of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil)
    Silva, Vanderlei Carneiro
    Gorgulho, Bartira
    Marchioni, Dirce Maria
    de Araujo, Tania Aparecida
    Santos, Itamar de Souza
    Lotufo, Paulo Andrade
    Bensenor, Isabela Martins
    JOURNAL OF HUMAN NUTRITION AND DIETETICS, 2022, 35 (05) : 883 - 894
  • [8] Demographic Factors Associated With Coronary Artery Calcification Incidence in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) Cohort
    Bittencourt, Marcio S.
    Generoso, Giuliano
    Staniak, Henrique L.
    Sharovsky, Rodolfo
    Bensenor, Isabela
    Lotufo, Paulo A.
    CIRCULATION, 2018, 138
  • [9] Association of Lipoprotein Subfractions With Atherosclerosis in the Baseline Sample of ELSA-Brasil Cohort Study - A Cross-Sectional Analysis
    Tebar, William R.
    Meneghini, Vandrize
    Goulart, Alessandra C.
    Santos, Itamar S.
    Santos, Raul D.
    Bittencourt, Marcio S.
    Generoso, Giuliano
    Pereira, Alexandre
    Blaha, Michael J.
    Jones, Steven R.
    Toth, Peter P.
    Otvos, James D.
    Lotufo, Paulo A.
    Bensenor, Isabela M.
    CIRCULATION, 2023, 147
  • [10] Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes ELSA-Brasil: accuracy study
    Olivera, Andre Rodrigues
    Roesler, Valter
    Iochpe, Cirano
    Schmidt, Maria Ines
    Vigo, Alvaro
    Barreto, Sandhi Maria
    Duncan, Bruce Bartholow
    SAO PAULO MEDICAL JOURNAL, 2017, 135 (03): : 234 - 246