Prediction of depression cases, incidence, and chronicity in a large occupational cohort using machine learning techniques: an analysis of the ELSA-Brasil study

被引:15
|
作者
Librenza-Garcia, Diego [1 ,2 ,3 ]
Passos, Ives Cavalcante [1 ,2 ]
Feiten, Jacson Gabriel [1 ,2 ]
Lotufo, Paulo A. [4 ,5 ]
Goulart, Alessandra C. [4 ,5 ]
de Souza Santos, Itamar [4 ,5 ]
Viana, Maria Carmen [6 ]
Bensenor, Isabela M. [4 ,5 ]
Brunoni, Andre Russowsky [4 ,5 ,7 ]
机构
[1] Hosp Clin Porto Alegre, Lab Mol Psychiat, Porto Alegre, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Programa Posgrad Psiquiatria & Ciencias Comportam, Porto Alegre, RS, Brazil
[3] McMaster Univ, Dept Psychiat & Behav Neurosci, Hamilton, ON, Canada
[4] Univ Sao Paulo, Dept Internal Med, Fac Med, Sao Paulo, Brazil
[5] Univ Sao Paulo, Univ Hosp, Sao Paulo, Brazil
[6] Univ Fed Espirito Santo, Dept Social Med, Postgrad Program Publ Hlth, Ctr Psychiat Epidemiol CEPEP, Vitoria, ES, Brazil
[7] Univ Sao Paulo, Dept & Inst Psychiat, Lab Neurosci LIM 27, Fac Med, Sao Paulo, Brazil
关键词
Incident depression; machine learning; major depressive disorder; prognosis; COMMON MENTAL-DISORDERS; GENERAL-POPULATION; GENDER-DIFFERENCES; CLASS IMBALANCE; RISK; QUESTIONNAIRE; DETERMINANTS; SYMPTOMS; PATTERNS; DISEASE;
D O I
10.1017/S0033291720001579
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Background. Depression is highly prevalent and marked by a chronic and recurrent course. Despite being a major cause of disability worldwide, little is known regarding the determinants of its heterogeneous course. Machine learning techniques present an opportunity to develop tools to predict diagnosis and prognosis at an individual level. Methods. We examined baseline (2008-2010) and follow-up (2012-2014) data of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), a large occupational cohort study. We implemented an elastic net regularization analysis with a 10-fold cross-validation procedure using socioeconomic and clinical factors as predictors to distinguish at follow-up: (1) depressed from non-depressed participants, (2) participants with incident depression from those who did not develop depression, and (3) participants with chronic (persistent or recurrent) depression from those without depression. Results. We assessed 15 105 and 13 922 participants at waves 1 and 2, respectively. The elastic net regularization model distinguished outcome levels in the test dataset with an area under the curve of 0.79 (95% CI 0.76-0.82), 0.71 (95% CI 0.66-0.77), 0.90 (95% CI 0.86-0.95) for analyses 1, 2, and 3, respectively. Conclusions. Diagnosis and prognosis related to depression can be predicted at an individual subject level by integrating low-cost variables, such as demographic and clinical data. Future studies should assess longer follow-up periods and combine biological predictors, such as genetics and blood biomarkers, to build more accurate tools to predict depression course.
引用
收藏
页码:2895 / 2903
页数:9
相关论文
共 50 条
  • [31] Technical Analysis of Occupational Fatal Accidents in Malaysia Using Machine Learning Techniques
    Zermane, Hanane
    Zermane, Abderrahim
    Tohir, Zahirasri Mohd
    IEEJ JOURNAL OF INDUSTRY APPLICATIONS, 2024, 13 (06) : 711 - 722
  • [32] Prediction of postpartum depression using machine learning techniques from social media text
    Fatima, Iram
    Abbasi, Burhan Ud Din
    Khan, Sharifullah
    Al-Saeed, Majed
    Ahmad, Hafiz Farooq
    Mumtaz, Rafia
    EXPERT SYSTEMS, 2019, 36 (04)
  • [33] A Comparative Study for Depression Prediction Using Machine Learning Classification Models
    Pramanik, Rwittika
    Khare, Sandali
    Harshvardhan, G. M.
    Gourisaria, Mahendra Kumar
    ADVANCES IN DATA AND INFORMATION SCIENCES, 2022, 318 : 233 - 246
  • [34] Machine Learning Models for the Prediction of Postpartum Depression: Application and Comparison Based on a Cohort Study
    Zhang, Weina
    Liu, Han
    Silenzio, Vincent Michael Bernard
    Qiu, Peiyuan
    Gong, Wenjie
    JMIR MEDICAL INFORMATICS, 2020, 8 (04)
  • [35] Development of Occupational Burnout Prediction Models using Machine Learning Techniques and Maslach Burnout Inventory
    Hernandez, Alexander A.
    Albina, Erlito M.
    Perez, Rustico P., Jr.
    2024 IEEE 15TH CONTROL AND SYSTEM GRADUATE RESEARCH COLLOQUIUM, ICSGRC 2024, 2024, : 47 - 51
  • [36] Parametric Analysis of Heart Attack Prediction Using Machine Learning Techniques
    Ranga, Virender
    Rohila, D.
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2018, 11 (04): : 37 - 48
  • [37] Prediction of Maternal Hemorrhage Using Machine Learning: Retrospective Cohort Study
    Westcott, Jill M.
    Hughes, Francine
    Liu, Wenke
    Grivainis, Mark
    Hoskins, Iffath
    Fenyo, David
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2022, 24 (07)
  • [38] Hospital Readmission Prediction using Machine Learning Techniques A Comparative Study
    Alajmani, Samah
    Elazhary, Hanan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (04) : 212 - 220
  • [39] Breast Cancer Prediction: A Comparative Study Using Machine Learning Techniques
    Islam M.M.
    Haque M.R.
    Iqbal H.
    Hasan M.M.
    Hasan M.
    Kabir M.N.
    SN Computer Science, 2020, 1 (5)
  • [40] An empirical study of software reliability prediction using machine learning techniques
    Kumar, Pradeep
    Singh, Yogesh
    International Journal of System Assurance Engineering and Management, 2012, 3 (03) : 194 - 208