Comparing machine learning algorithms for multimorbidity prediction: An example from the Elsa-Brasil study

被引:6
|
作者
Paula, Daniela Polessa [1 ]
Aguiar, Odaleia Barbosa [2 ]
Marques, Larissa Pruner [3 ]
Bensenor, Isabela [4 ,5 ]
Suemoto, Claudia Kimie [6 ]
Mendes da Fonseca, Maria de Jesus [7 ]
Griep, Rosane Harter [8 ]
机构
[1] Brazilian Inst Geog & Stat, Natl Sch Stat Sci, Rio De Janeiro, Brazil
[2] Univ Estado Rio De Janeiro, Inst Nutr, Rio De Janeiro, Brazil
[3] Fundacao Oswaldo Cruz, Natl Sch Publ Hlth, Rio De Janeiro, Brazil
[4] Univ Sao Paulo, Fac Med, Dept Internal Med, Sao Paulo, Brazil
[5] Univ Sao Paulo, Univ Hosp, Sao Paulo, Brazil
[6] Univ Sao Paulo, Div Geriatr, Dept Clin Med, Fac Med, Sao Paulo, Brazil
[7] Natl Sch Publ Hlth ENSP Fiocruz, Dept Epidemiol, Rio De Janeiro, Brazil
[8] Oswaldo Cruz Inst, Hlth & Environm Educ Lab, Rio De Janeiro, Brazil
来源
PLOS ONE | 2022年 / 17卷 / 10期
关键词
MULTILABEL CLASSIFICATION; POPULATION; PATTERNS; MODEL; CARE;
D O I
10.1371/journal.pone.0275619
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Multimorbidity is a worldwide concern related to greater disability, worse quality of life, and mortality. The early prediction is crucial for preventive strategies design and integrative medical practice. However, knowledge about how to predict multimorbidity is limited, possibly due to the complexity involved in predicting multiple chronic diseases. Methods In this study, we present the use of a machine learning approach to build cost-effective multimorbidity prediction models. Based on predictors easily obtainable in clinical practice (sociodemographic, clinical, family disease history and lifestyle), we build and compared the performance of seven multilabel classifiers (multivariate random forest, and classifier chain, binary relevance and binary dependence, with random forest and support vector machine as base classifiers), using a sample of 15105 participants from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). We developed a web application for the building and use of prediction models. Results Classifier chain with random forest as base classifier performed better (accuracy = 0.34, subset accuracy = 0.15, and Hamming Loss = 0.16). For different feature sets, random forest based classifiers outperformed those based on support vector machine. BMI, blood pressure, sex, and age were the features most relevant to multimorbidity prediction. Conclusions Our results support the choice of random forest based classifiers for multimorbidity prediction.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes ELSA-Brasil: accuracy study
    Olivera, Andre Rodrigues
    Roesler, Valter
    Iochpe, Cirano
    Schmidt, Maria Ines
    Vigo, Alvaro
    Barreto, Sandhi Maria
    Duncan, Bruce Bartholow
    SAO PAULO MEDICAL JOURNAL, 2017, 135 (03): : 234 - 246
  • [2] WOMAC FUNCTION SCORES AND ASSOCIATED FACTORS IN THE ELSA-BRASIL MUSCULOSKELETAL STUDY (ELSA-BRASIL MSK)
    Silva, P. T.
    Telles, R. W.
    Machado, L. A.
    Costa, A. B.
    Miguel, R. C.
    Silva, L. C.
    Barreto, S. M.
    OSTEOARTHRITIS AND CARTILAGE, 2016, 24 : S447 - S447
  • [3] Influence of internal migration on multimorbidity in the Brazilian longitudinal study of adult health (ELSA-Brasil)
    Domingos, Ana Luiza Gomes
    Nobre, Aline Araujo
    Brandao, Joana Maia
    Barreto, Sandhi Maria
    Bensenor, Isabela Judith Martins
    Bastos, Leonardo Soares
    da Fonseca, Maria de Jesus Mendes
    Moreno, Arlinda B.
    Griep, Rosane Harter
    Cardoso, Leticia de Oliveira
    JOURNAL OF PUBLIC HEALTH-HEIDELBERG, 2024,
  • [4] Clustering analysis and machine learning algorithms in the prediction of dietary patterns: Cross-sectional results of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil)
    Silva, Vanderlei Carneiro
    Gorgulho, Bartira
    Marchioni, Dirce Maria
    de Araujo, Tania Aparecida
    Santos, Itamar de Souza
    Lotufo, Paulo Andrade
    Bensenor, Isabela Martins
    JOURNAL OF HUMAN NUTRITION AND DIETETICS, 2022, 35 (05) : 883 - 894
  • [5] Racial inequalities in multimorbidity: baseline of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil)
    Fernanda Esthefane Garrides Oliveira
    Rosane Harter Griep
    Dora Chor
    Luana Giatti
    Luciana A. C. Machado
    Sandhi Maria Barreto
    Alexandre da Costa Pereira
    Maria de Jesus Mendes da Fonseca
    Leonardo Soares Bastos
    BMC Public Health, 22
  • [6] Racial inequalities in multimorbidity: baseline of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil)
    Garrides Oliveira, Fernanda Esthefane
    Griep, Rosane Harter
    Chor, Dora
    Giatti, Luana
    Machado, Luciana A. C.
    Barreto, Sandhi Maria
    Pereira, Alexandre da Costa
    Mendes da Fonseca, Maria de Jesus
    Bastos, Leonardo Soares
    BMC PUBLIC HEALTH, 2022, 22 (01)
  • [7] Multimorbidity prevalence and patterns at the baseline of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil)
    Marques, Larissa Pruner
    de Aguiar, Odaleia Barbosa
    Paula, Daniela Polessa
    Oliveira, Fernanda Esthefane Garrides
    Chor, Dora
    Bensenor, Isabela
    Ribeiro, Antonio Luiz
    Brunoni, Andre R.
    Machado, Luciana
    da Fonseca, Maria de Jesus Mendes
    Griep, Rosane Harter
    JOURNAL OF MULTIMORBIDITY AND COMORBIDITY, 2023, 13
  • [8] INVESTIGATING OSTEOARTHRITIS IN A SUBCOHORT OF THE BRAZILIAN LONGITUDINAL STUDY OF ADULT HEALTH: THE ELSA-BRASIL MUSCULOSKELETAL STUDY (ELSA-BRASIL MSK)
    Telles, R. W.
    Silva, L. C.
    Machado, L. A.
    Barreto, S. M.
    OSTEOARTHRITIS AND CARTILAGE, 2016, 24 : S210 - S211
  • [9] Prediction of depression cases, incidence, and chronicity in a large occupational cohort using machine learning techniques: an analysis of the ELSA-Brasil study
    Librenza-Garcia, Diego
    Passos, Ives Cavalcante
    Feiten, Jacson Gabriel
    Lotufo, Paulo A.
    Goulart, Alessandra C.
    de Souza Santos, Itamar
    Viana, Maria Carmen
    Bensenor, Isabela M.
    Brunoni, Andre Russowsky
    PSYCHOLOGICAL MEDICINE, 2021, 51 (16) : 2895 - 2903
  • [10] Additional Data on Atrial Fibrillation from ELSA-Brasil Study
    Issa, Victor Sarli
    Mansur, Alfredo Jose
    ARQUIVOS BRASILEIROS DE CARDIOLOGIA, 2025, 122 (01)