Comparing machine learning algorithms for multimorbidity prediction: An example from the Elsa-Brasil study

被引:6
|
作者
Paula, Daniela Polessa [1 ]
Aguiar, Odaleia Barbosa [2 ]
Marques, Larissa Pruner [3 ]
Bensenor, Isabela [4 ,5 ]
Suemoto, Claudia Kimie [6 ]
Mendes da Fonseca, Maria de Jesus [7 ]
Griep, Rosane Harter [8 ]
机构
[1] Brazilian Inst Geog & Stat, Natl Sch Stat Sci, Rio De Janeiro, Brazil
[2] Univ Estado Rio De Janeiro, Inst Nutr, Rio De Janeiro, Brazil
[3] Fundacao Oswaldo Cruz, Natl Sch Publ Hlth, Rio De Janeiro, Brazil
[4] Univ Sao Paulo, Fac Med, Dept Internal Med, Sao Paulo, Brazil
[5] Univ Sao Paulo, Univ Hosp, Sao Paulo, Brazil
[6] Univ Sao Paulo, Div Geriatr, Dept Clin Med, Fac Med, Sao Paulo, Brazil
[7] Natl Sch Publ Hlth ENSP Fiocruz, Dept Epidemiol, Rio De Janeiro, Brazil
[8] Oswaldo Cruz Inst, Hlth & Environm Educ Lab, Rio De Janeiro, Brazil
来源
PLOS ONE | 2022年 / 17卷 / 10期
关键词
MULTILABEL CLASSIFICATION; POPULATION; PATTERNS; MODEL; CARE;
D O I
10.1371/journal.pone.0275619
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Multimorbidity is a worldwide concern related to greater disability, worse quality of life, and mortality. The early prediction is crucial for preventive strategies design and integrative medical practice. However, knowledge about how to predict multimorbidity is limited, possibly due to the complexity involved in predicting multiple chronic diseases. Methods In this study, we present the use of a machine learning approach to build cost-effective multimorbidity prediction models. Based on predictors easily obtainable in clinical practice (sociodemographic, clinical, family disease history and lifestyle), we build and compared the performance of seven multilabel classifiers (multivariate random forest, and classifier chain, binary relevance and binary dependence, with random forest and support vector machine as base classifiers), using a sample of 15105 participants from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). We developed a web application for the building and use of prediction models. Results Classifier chain with random forest as base classifier performed better (accuracy = 0.34, subset accuracy = 0.15, and Hamming Loss = 0.16). For different feature sets, random forest based classifiers outperformed those based on support vector machine. BMI, blood pressure, sex, and age were the features most relevant to multimorbidity prediction. Conclusions Our results support the choice of random forest based classifiers for multimorbidity prediction.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Vehicular traffic density and cognitive performance in the ELSA-Brasil study
    Rocha, Douglas
    Suemoto, Claudia K.
    Santos, Itamar Souza
    Lotufo, Paulo A.
    Bensenor, Isabela
    Gouveia, Nelson
    ENVIRONMENTAL RESEARCH, 2020, 191
  • [22] Cohort Profile: Longitudinal Study of Adult Health (ELSA-Brasil)
    Schmidt, Maria Ines
    Duncan, Bruce B.
    Mill, Jose Geraldo
    Lotufo, Paulo A.
    Chor, Dora
    Barreto, Sandhi Maria
    Aquino, Estela M. L.
    Azeredo Passos, Valeria Maria
    Matos, Sheila M. A.
    Molina, Maria del Carmen B.
    Carvalho, Marilia S.
    Bensenor, Isabela M.
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 (01) : 68 - 75
  • [23] Association between perceived racial discrimination and hypertension: findings from the ELSA-Brasil study
    Mendes, Patricia Miranda
    Nobre, Aline Araujo
    Griep, Rosane Harter
    Nery Guimaraes, Joanna Miguez
    Juvanhol, Leidjaira Lopes
    Barreto, Sandhi Maria
    Pereira, Alexandre
    Chor, Dora
    CADERNOS DE SAUDE PUBLICA, 2018, 34 (02):
  • [24] Longitudinal measurement invariance of neuropsychological tests in a diverse sample from the ELSA-Brasil study
    Bertola, Laiss
    Bensenor, Isabela M.
    Gross, Alden L.
    Caramelli, Paulo
    Barreto, Sandhi Maria
    Moreno, Arlinda B.
    Griep, Rosane H.
    Viana, Maria Carmen
    Lotufo, Paulo A.
    Suemoto, Claudia K.
    BRAZILIAN JOURNAL OF PSYCHIATRY, 2021, 43 (03) : 254 - 261
  • [25] Association of Sarcopenia With Performance on Multiple Cognitive Domains: Results From the ELSA-Brasil Study
    Szlejf, Claudia
    Suemoto, Claudia K.
    Lotufo, Paulo A.
    Bensenor, Isabela M.
    JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 2019, 74 (11): : 1805 - 1811
  • [26] Psychosocial Work Stress and Mental Health: Results from ELSA-Brasil Study.
    Scopel, J.
    Nunes, M. A. A.
    Vigo, A.
    Griep, R. H.
    Bensenor, I.
    Brunoni, A.
    Santos, I.
    Schmidt, M. I. A.
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 : 273 - 273
  • [27] Job Strain and Unhealthy Lifestyle: Results from the ELSA-Brasil Cohort Study.
    Griep, R. H.
    Nobre, A. A.
    Fonseca, M. D. J. D.
    Cardoso, L.
    Giatti, L.
    Alves, M. G.
    Toivanen, S.
    Mello, E. C.
    Chor, D.
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 : 10 - 10
  • [28] Depression is a risk factor for metabolic syndrome: Results from the ELSA-Brasil cohort study
    Ferriani, Lara Onofre
    Silva, Daniela Alves
    Molina, Maria del Carmen Bisi
    Mill, Jose Geraldo
    Brunoni, Andre Russowsky
    da Fonseca, Maria de Jesus Mendes
    Moreno, Arlinda B.
    Bensenor, Isabela M.
    de Aguiar, Odaleia Barbosa
    Barreto, Sandhi Maria
    Viana, Maria Carmen
    JOURNAL OF PSYCHIATRIC RESEARCH, 2023, 158 : 56 - 62
  • [29] Arterial Stiffness Relates to Worse Renal Function in Adults From the ELSA-Brasil Study
    Candido, Julia S.
    Brant, Luisa C.
    Ribeiro, Antonio L.
    Giatti, Luana G.
    Lotufo, Paulo A.
    Mill, Jose G.
    Duncan, Bruce B.
    Camelo, Lidyane V.
    Barreto, Sandhi M.
    CIRCULATION, 2017, 136
  • [30] Poorer cardiovascular health is associated with psychiatric comorbidity: results from the ELSA-Brasil Study
    Szlejf, Claudia
    Suemoto, Claudia K.
    Santos, Itamar S.
    Brunoni, Andre R.
    Nunes, Maria Angelica
    Viana, Maria Carmen
    Barreto, Sandhi Maria
    Lotufo, Paulo A.
    Bensenor, Isabela M.
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2019, 274 : 358 - 365