Predicting Compressive Strength of 3D Printed Mortar in Structural Members Using Machine Learning

被引:28
|
作者
Izadgoshasb, Hamed [1 ]
Kandiri, Amirreza [2 ]
Shakor, Pshtiwan [3 ]
Laghi, Vittoria [4 ]
Gasparini, Giada [4 ]
机构
[1] Univ Genoa, DITEN Dept, I-16145 Genoa, Italy
[2] Univ Coll Dublin, Sch Civil Engn, Dublin D04 V1W8, Ireland
[3] Univ Technol Sydney, Sch Civil & Environm Engn, Ultimo, NSW 2007, Australia
[4] Univ Bologna, Dept Civil Chem Environm & Mat Engn, I-40136 Bologna, Italy
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 22期
关键词
multi-objective optimization; artificial neural network; compressive strength; 3DP mortar; additive manufacturing; FLY-ASH; CEMENTITIOUS MATERIALS; MIX DESIGN; CONCRETE; PERFORMANCE; MIXTURES; TAILINGS;
D O I
10.3390/app112210826
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Machine learning is the discipline of learning commands in the computer machine to predict and expect the results of real application and is currently the most promising simulation in artificial intelligence. This paper aims at using different algorithms to calculate and predict the compressive strength of extrusion 3DP concrete (cement mortar). The investigation is carried out using multi-objective grasshopper optimization algorithm (MOGOA) and artificial neural network (ANN). Given that the accuracy of a machine learning method depends on the number of data records, and for concrete 3D printing, this number is limited to few years of study, this work develops a new method by combining both methodologies into an ANNMOGOA approach to predict the compressive strength of 3D-printed concrete. Some promising results in the iteration process are achieved.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Predicting and optimizing the concrete compressive strength using an explainable boosting machine learning model
    Vo T.-C.
    Nguyen T.-Q.
    Tran V.-L.
    Asian Journal of Civil Engineering, 2024, 25 (2) : 1365 - 1383
  • [32] Predicting compressive strength of lightweight foamed concrete using extreme learning machine model
    Yaseen, Zaher Mundher
    Deo, Ravinesh C.
    Hilal, Ameer
    Abd, Abbas M.
    Bueno, Laura Cornejo
    Salcedo-Sanz, Sancho
    Nehdi, Moncef L.
    ADVANCES IN ENGINEERING SOFTWARE, 2018, 115 : 112 - 125
  • [33] Feasibility analysis for predicting the compressive and tensile strength of concrete using machine learning algorithms
    Sami, Balahaha Hadi Ziyad
    Sami, Balahaha Fadi Ziyad
    Kumar, Pavitra
    Ahmed, Ali Najah
    Amieghemen, Goodnews E.
    Sherif, Muhammad M.
    El-Shafie, Ahmed
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 18
  • [34] Predicting the Compressive Strength of Environmentally Friendly Concrete Using Multiple Machine Learning Algorithms
    Yang, Yanhua
    Liu, Guiyong
    Zhang, Haihong
    Zhang, Yan
    Yang, Xiaolong
    BUILDINGS, 2024, 14 (01)
  • [35] Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms
    Song, Hongwei
    Ahmad, Ayaz
    Farooq, Furqan
    Ostrowski, Krzysztof Adam
    Maslak, Mariusz
    Czarnecki, Slawomir
    Aslam, Fahid
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 308
  • [36] Predicting the Compressive Strength and the Effective Porosity of Pervious Concrete Using Machine Learning Methods
    Ba-Anh Le
    Viet-Hung Vu
    Seo, Soo-Yeon
    Bao-Viet Tran
    Tuan Nguyen-Sy
    Minh-Cuong Le
    Thai-Son Vu
    KSCE JOURNAL OF CIVIL ENGINEERING, 2022, 26 (11) : 4664 - 4679
  • [37] Predicting the Compressive Strength and the Effective Porosity of Pervious Concrete Using Machine Learning Methods
    Ba-Anh Le
    Viet-Hung Vu
    Soo-Yeon Seo
    Bao-Viet Tran
    Tuan Nguyen-Sy
    Minh-Cuong Le
    Thai-Son Vu
    KSCE Journal of Civil Engineering, 2022, 26 : 4664 - 4679
  • [38] Enhancing Surface Fault Detection Using Machine Learning for 3D Printed Products
    Kadam, Vaibhav
    Kumar, Satish
    Bongale, Arunkumar
    Wazarkar, Seema
    Kamat, Pooja
    Patil, Shruti
    APPLIED SYSTEM INNOVATION, 2021, 4 (02)
  • [39] The effect of wind on 3D printed concrete interlayer bond strength based on machine learning algorithms
    Cicione, A.
    Kruger, P. J.
    Mostert, J. P.
    Walls, R.
    Van Zijl, G.
    CURRENT PERSPECTIVES AND NEW DIRECTIONS IN MECHANICS, MODELLING AND DESIGN OF STRUCTURAL SYSTEMS, 2022, : 405 - 409
  • [40] The effect of wind on 3D printed concrete interlayer bond strength based on machine learning algorithms
    Cicione, A.
    Kruger, P. J.
    Mostert, J. P.
    Walls, R.
    Van Zijl, G.
    CURRENT PERSPECTIVES AND NEW DIRECTIONS IN MECHANICS, MODELLING AND DESIGN OF STRUCTURAL SYSTEMS, 2022, : 141 - 142