Feasibility analysis for predicting the compressive and tensile strength of concrete using machine learning algorithms

被引:22
|
作者
Sami, Balahaha Hadi Ziyad [1 ]
Sami, Balahaha Fadi Ziyad [1 ]
Kumar, Pavitra [2 ]
Ahmed, Ali Najah [1 ]
Amieghemen, Goodnews E. [3 ]
Sherif, Muhammad M. [3 ]
El-Shafie, Ahmed [4 ]
机构
[1] Univ Tenaga Nas, Coll Engn, Dept Civil Engn, Selangor 43000, Malaysia
[2] Univ Liverpool, Dept Geog & Planning, Liverpool, England
[3] Univ Alabama Birmingham, Sch Engn, Dept Civil Construct & Environm Engn, Birmingham, AL 35205 USA
[4] Univ Malaya, Fac Engn, Dept Civil Engn, Kuala Lumpur, Malaysia
关键词
Predictive modeling; Machine learning; Concrete; Compressive strength; Tensile strength;
D O I
10.1016/j.cscm.2023.e01893
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Concrete is the most utilized material (i.e., average production of 2 billion tons per year) for the construction of buildings, bridges, roads, dams, and several other important infrastructures. The strength and durability of these structures largely depend on the compressive strength of the concrete. The compressive strength of concrete depends on the proportionality of the key con-stituents (i.e., fine aggregate, coarse aggregate, cement, and water). However, the optimization of the constituent proportions (i.e., matrix design) to achieve high-strength concrete is a challenging task. Furthermore, it is essential to reduce the carbon footprint of the cementitious composites through the optimization of the matrix. In this research, machine learning algorithms including regression models, tree regression models, support vector regression (SVR), ensemble regression (ER), and gaussian process regression (GPR) were utilized to predict the compressive and tensile concrete strength. Also, the model performance was characterized based on the number of input variables utilized. The dataset used in this research was compiled from journal publications. The results showed that the exponential GPR had the highest performance and accuracy. The model had an impressive performance during the training phase, with a R2 of 0.98, RMSE of 2.412 MPa, and MAE of 1.6249 MPa when using 8 input variables to predict the compressive strength of concrete. In the testing phase, the model maintained its accuracy with a R2 of 0.99, RMSE of 0.0025134 MPa, and MAE of 0.0016367 MPa. In the training and testing phases, the exponential GPR also demonstrated high accuracy in predicting the tensile strength with an R2, RMSE, and MAE of 0.99, 0.00049247 MPa, and 0.00036929 MPa, respectively. Furthermore, in the prediction of tensile strength the number of variables utilized had an insignificant effect on the performance of the models. However, in predicting the compressive strength, an increase in the number of input variables lead to an enhancement in the performance metrics. The results of this research can allow for the quick and accurate prediction of the strength of a given concrete mixture design.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Predicting the Compressive Strength of Environmentally Friendly Concrete Using Multiple Machine Learning Algorithms
    Yang, Yanhua
    Liu, Guiyong
    Zhang, Haihong
    Zhang, Yan
    Yang, Xiaolong
    BUILDINGS, 2024, 14 (01)
  • [2] Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms
    Song, Hongwei
    Ahmad, Ayaz
    Farooq, Furqan
    Ostrowski, Krzysztof Adam
    Maslak, Mariusz
    Czarnecki, Slawomir
    Aslam, Fahid
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 308
  • [3] Predicting compressive strength of geopolymer concrete using machine learning
    Gupta, Priyanka
    Gupta, Nakul
    Saxena, Kuldeep K. K.
    INNOVATION AND EMERGING TECHNOLOGIES, 2023, 10
  • [4] Predicting tensile strength of reinforced concrete composited with geopolymer using several machine learning algorithms
    Albaijan, Ibrahim
    Samadi, Hanan
    Mahmoodzadeh, Arsalan
    Fakhri, Danial
    Hosseinzadeh, Mehdi
    Ghazouani, Nejib
    Elhadi, Khaled Mohamed
    STEEL AND COMPOSITE STRUCTURES, 2024, 52 (03): : 293 - 312
  • [5] Predicting compressive strength of geopolymer concrete using machine learning models
    Kurhade, Swapnil Deepak
    Patankar, Subhash
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2025, 10 (01)
  • [6] Comparative studies of different machine learning algorithms in predicting the compressive strength of geopolymer concrete
    Paruthi, Sagar
    Rahman, Ibadur
    Husain, Asif
    COMPUTERS AND CONCRETE, 2023, 32 (06): : 607 - 613
  • [7] Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms
    Ahmad, Ayaz
    Ahmad, Waqas
    Chaiyasarn, Krisada
    Ostrowski, Krzysztof Adam
    Aslam, Fahid
    Zajdel, Paulina
    Joyklad, Panuwat
    POLYMERS, 2021, 13 (19)
  • [8] Predicting compressive strength of concrete with fly ash and admixture using XGBoost: a comparative study of machine learning algorithms
    Gogineni A.
    Panday I.K.
    Kumar P.
    Paswan R.K.
    Asian Journal of Civil Engineering, 2024, 25 (1) : 685 - 698
  • [9] Estimating the compressive strength of plastic concrete samples using machine learning algorithms
    Alishvandi A.
    Karimi J.
    Damari S.
    Moayedi Far A.
    Setodeh Pour M.
    Ahmadi M.
    Asian Journal of Civil Engineering, 2024, 25 (2) : 1503 - 1516
  • [10] Study on predicting compressive strength of concrete using supervised machine learning techniques
    Varma B.V.
    Prasad E.V.
    Singha S.
    Asian Journal of Civil Engineering, 2023, 24 (7) : 2549 - 2560