A sparse parallel hybrid Monte Carlo algorithm for matrix computations

被引:0
|
作者
Branford, S [1 ]
Weihrauch, C [1 ]
Alexandrov, V [1 ]
机构
[1] Univ Reading, Sch Syst Engn, Adv Comp & Emerging Technol Ctr, Reading RG6 6AY, Berks, England
来源
关键词
Monte Carlo method; matrix inversion; sparse matrices;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we introduce a new algorithm, based on the successful work of Fathi and Alexandrov, on hybrid Monte Carlo algorithms for matrix inversion and solving systems of linear algebraic equations. This algorithm consists of two parts, approximate inversion by Monte Carlo and iterative refinement using a deterministic method. Here we present a parallel hybrid Monte Carlo algorithm, which uses Monte Carlo to generate an approximate inverse and that improves the accuracy of the inverse with an iterative refinement. The new algorithm is applied efficiently to sparse non-singular matrices. When we are solving a system of linear algebraic equations, Bx = b, the inverse matrix is used to compute the solution vector x = B(-1)b. We present results that show the efficiency of the parallel hybrid Monte Carlo algorithm in the case of sparse matrices.
引用
收藏
页码:743 / 751
页数:9
相关论文
共 50 条
  • [21] A new highly convergent Monte Carlo method for matrix computations
    Dimov, IT
    Alexandrov, VN
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (2-5) : 165 - 181
  • [22] A polynomial hybrid Monte Carlo algorithm
    Frezzotti, R
    Jansen, K
    [J]. PHYSICS LETTERS B, 1997, 402 (3-4) : 328 - 334
  • [23] Accelerating the hybrid Monte Carlo algorithm
    Khan, AA
    Bakeyev, T
    Göckeler, M
    Horsley, R
    Pleiter, D
    Rakow, P
    Schäfer, A
    Schierholz, G
    Stüben, H
    [J]. PHYSICS LETTERS B, 2003, 564 (3-4) : 235 - 240
  • [24] Parallel algorithm of sparse matrix multiplying
    Cai, Zixing
    Zheng, Jinhua
    Zhu, Zhenmin
    [J]. Xiangtan Daxue Ziran Kexue Xuebao, 2000, 22 (01):
  • [25] A fast algorithm for sparse matrix computations related to inversion
    Li, S.
    Wu, W.
    Darve, E.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 : 915 - 945
  • [26] Segmented Merge: A New Primitive for Parallel Sparse Matrix Computations
    Ji, Haonan
    Lu, Shibo
    Hou, Kaixi
    Wang, Hao
    Jin, Zhou
    Liu, Weifeng
    Vinter, Brian
    [J]. INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2021, 49 (05) : 732 - 744
  • [27] Parallel sparse matrix computations in the industrial strength PINEAPL library
    Krommer, AR
    [J]. APPLIED PARALLEL COMPUTING: LARGE SCALE SCIENTIFIC AND INDUSTRIAL PROBLEMS, 1998, 1541 : 281 - 285
  • [28] Segmented Merge: A New Primitive for Parallel Sparse Matrix Computations
    Haonan Ji
    Shibo Lu
    Kaixi Hou
    Hao Wang
    Zhou Jin
    Weifeng Liu
    Brian Vinter
    [J]. International Journal of Parallel Programming, 2021, 49 : 732 - 744
  • [29] Hybrid asynchronous algorithm for parallel kinetic Monte Carlo simulations of thin film growth
    Shim, Y
    Amar, JG
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 212 (01) : 305 - 317
  • [30] Hybrid Monte Carlo methods for matrix computation
    Alexandrov, V
    Liu, B
    [J]. NUMERICAL METHODS AND APPLICATIONS, 2003, 2542 : 73 - 82