Accelerating the hybrid Monte Carlo algorithm

被引:21
|
作者
Khan, AA [1 ]
Bakeyev, T
Göckeler, M
Horsley, R
Pleiter, D
Rakow, P
Schäfer, A
Schierholz, G
Stüben, H
机构
[1] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[2] Joint Inst Nucl Res, Dubna 141980, Russia
[3] Univ Leipzig, Inst Theoret Phys, D-04109 Leipzig, Germany
[4] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
[5] Univ Edinburgh, Sch Phys, Edinburgh EH9 3JZ, Midlothian, Scotland
[6] John Neumann Inst Comp, D-15738 Zeuthen, Germany
[7] Univ Liverpool, Dept Math Sci, Div Theoret Phys, Liverpool L69 3BX, Merseyside, England
[8] DESY, D-22603 Hamburg, Germany
[9] Konrad Zuse Zentrum Informat Tech Berlin, D-14195 Berlin, Germany
关键词
D O I
10.1016/S0370-2693(03)00703-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
An algorithm for separating the high- and low-frequency molecular dynamics modes in hybrid Monte Carlo (HMC) simulations of gauge theories with dynamical fermions is presented. The separation is based on splitting the pseudo-fermion action into two parts, as was initially proposed by Hasenbusch. We propose to introduce different evolution time-scales for each part. We test our proposal in realistic simulations of two-flavor O(a) improved Wilson fermions. A speed-up of more than a factor of three compared to the standard HMC algorithm is observed in a typical run. (C) 2003 Published by Elsevier B.V.
引用
收藏
页码:235 / 240
页数:6
相关论文
共 50 条
  • [1] Accelerating staggered-fermion dynamics with the rational hybrid Monte Carlo algorithm
    Clark, M. A.
    Kennedy, A. D.
    [J]. PHYSICAL REVIEW D, 2007, 75 (01):
  • [2] Accelerating Hasenbusch's acceleration of hybrid Monte Carlo
    Khan, AA
    Bakeyev, T
    Gökeler, M
    Horsley, R
    Pleiter, D
    Rakow, PEL
    Schäfer, A
    Schierholz, G
    Stüben, H
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2004, 129 : 853 - 855
  • [3] A polynomial hybrid Monte Carlo algorithm
    Frezzotti, R
    Jansen, K
    [J]. PHYSICS LETTERS B, 1997, 402 (3-4) : 328 - 334
  • [4] Tunneling hybrid Monte-Carlo algorithm
    Golterman, Maarten
    Shamir, Yigal
    [J]. PHYSICAL REVIEW D, 2007, 76 (09):
  • [5] Optimal tuning of the hybrid Monte Carlo algorithm
    Beskos, Alexandros
    Pillai, Natesh
    Roberts, Gareth
    Sanz-Serna, Jesus-Maria
    Stuart, Andrew
    [J]. BERNOULLI, 2013, 19 (5A) : 1501 - 1534
  • [6] Choice of integrator in the hybrid Monte Carlo algorithm
    Takaishi, T
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2000, 133 (01) : 6 - 17
  • [7] Reversibility violation in the Hybrid Monte Carlo algorithm
    Urbach, Carsten
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2018, 224 : 44 - 51
  • [8] Tuning the generalized hybrid Monte Carlo algorithm
    Kennedy, AD
    Edwards, R
    Mino, H
    Pendleton, B
    [J]. NUCLEAR PHYSICS B, 1996, : 781 - 784
  • [9] TUNING THE HYBRID MONTE-CARLO ALGORITHM
    GUPTA, R
    KILCUP, GW
    SHARPE, SR
    [J]. PHYSICAL REVIEW D, 1988, 38 (04): : 1278 - 1287
  • [10] Experiences with the polynomial Hybrid Monte Carlo algorithm
    Frezzotti, R
    Jansen, K
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 : 943 - 945