A new discretization methodology for diffusion problems on generalized polyhedral meshes

被引:113
|
作者
Brezzi, Franco
Lipnikov, Konstantin
Shashkov, Mikhail
Simoncini, Valeria
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Ist Univ Super, CeSNA, Pavia, Italy
[3] Univ Bologna, Dipartmento Matemat, CIRSA, Ravenna, Italy
[4] IMATI CNR, Pavia, Italy
关键词
finite difference; compatible discretizations; polyhedral meshes;
D O I
10.1016/j.cma.2006.10.028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop a family of inexpensive discretization schemes for diffusion problems on generalized polyhedral meshes with elements having non-planar faces. The material properties are described by a full tensor. We also prove superconvergence for the scalar (pressure) variable under very general assumptions. The theoretical results are confirmed with numerical experiments. In the practically important case of logically cubic meshes with randomly perturbed nodes, the mixed finite element with the lowest order Raviart-Thomas elements does not converge while the proposed mimetic method has the optimal convergence rate. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:3682 / 3692
页数:11
相关论文
共 50 条
  • [21] Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces
    Eymard, R.
    Gallouet, T.
    Herbin, R.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (04) : 1009 - 1043
  • [22] A pyramid scheme for three-dimensional diffusion equations on polyhedral meshes
    Wang, Shuai
    Hang, Xudeng
    Yuan, Guangwei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 350 : 590 - 606
  • [23] New algorithm to find isoptic surfaces of polyhedral meshes
    Nagy, Ferenc
    Kunkli, Roland
    Hoffmann, Miklos
    COMPUTER AIDED GEOMETRIC DESIGN, 2018, 64 : 90 - 99
  • [24] A local support-operators diffusion discretization scheme for hexahedral meshes
    Morel, JE
    Hall, ML
    Shashkov, MJ
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 170 (01) : 338 - 372
  • [25] A linearity-preserving diamond scheme with extended least square interpolation for the heterogeneous and anisotropic diffusion problems on polyhedral meshes
    Luo, Longshan
    Dong, Cheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 144 : 182 - 197
  • [26] A volume integral formulation for solving eddy current problems on polyhedral meshes
    Bettini, Paolo
    Passarotto, Mauro
    Specogna, Ruben
    2016 IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (CEFC), 2016,
  • [27] A Volume Integral Formulation for Solving Eddy Current Problems on Polyhedral Meshes
    Bettini, Paolo
    Passarotto, Mauro
    Specogna, Ruben
    IEEE TRANSACTIONS ON MAGNETICS, 2017, 53 (06)
  • [28] A mixed discretization of elliptic problems on polyhedra using anisotropic hybrid meshes
    Alexis B. Jawtuschenko
    Ariel L. Lombardi
    Calcolo, 2019, 56
  • [29] GENERALIZED MESHES FOR QUANTUM-MECHANICAL PROBLEMS
    BAYE, D
    HEENEN, PH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (11): : 2041 - 2059
  • [30] ANALYSIS OF COMPATIBLE DISCRETE OPERATOR SCHEMES FOR ELLIPTIC PROBLEMS ON POLYHEDRAL MESHES
    Bonelle, Jerome
    Ern, Alexandre
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (02): : 553 - 581