Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces

被引:245
|
作者
Eymard, R. [2 ]
Gallouet, T. [1 ]
Herbin, R. [1 ]
机构
[1] Univ Marseille, CMI, F-13453 Marseille 13, France
[2] Univ Paris Est, F-77454 Marne La Vallee 2, France
关键词
heterogeneous anisotropic diffusion; nonconforming grids; finite-volume schemes; FINITE-VOLUME SCHEME; UNSTRUCTURED GRIDS; POLYHEDRAL MESHES; CONVERGENCE; OPERATORS; MEDIA; APPROXIMATION; CONVECTION;
D O I
10.1093/imanum/drn084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A symmetric discretization scheme for heterogeneous anisotropic diffusion problems on general meshes is developed and studied. The unknowns of this scheme are the values at the centre of the control volumes and at some internal interfaces that may, for instance, be chosen at the diffusion tensor discontinuities. The scheme is therefore completely cell centred if no edge unknown is kept. It is shown to be accurate for several numerical examples. The convergence of the approximate solution to the continuous solution is proved for general (possibly discontinuous) tensors and general (possibly nonconforming) meshes and with no regularity assumption on the solution. An error estimate is then deduced under suitable regularity assumptions on the solution.
引用
收藏
页码:1009 / 1043
页数:35
相关论文
共 46 条
  • [1] SEMI HYBRID METHOD FOR HETEROGENEOUS AND ANISOTROPIC DIFFUSION PROBLEMS ON GENERAL MESHES
    Coatleven, Julien
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (04): : 1063 - 1084
  • [2] Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes
    Agelas, Leo
    Masson, Roland
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (17-18) : 1007 - 1012
  • [3] A nonlinear correction scheme for the heterogeneous and anisotropic diffusion problems on polygonal meshes
    Miao, Shuai
    Wu, Jiming
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 448
  • [4] A mixed discretization of elliptic problems on polyhedra using anisotropic hybrid meshes
    Alexis B. Jawtuschenko
    Ariel L. Lombardi
    Calcolo, 2019, 56
  • [5] A mixed discretization of elliptic problems on polyhedra using anisotropic hybrid meshes
    Jawtuschenko, Alexis B.
    Lombardi, Ariel L.
    CALCOLO, 2019, 56 (02)
  • [6] A stabilized linearity-preserving scheme for the heterogeneous and anisotropic diffusion problems on polygonal meshes
    Wu, Jiming
    Gao, Zhiming
    Dai, Zihuan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (21) : 7152 - 7169
  • [7] THE G METHOD FOR HETEROGENEOUS ANISOTROPIC DIFFUSION ON GENERAL MESHES
    Agelas, Leo
    Di Pietro, Daniele A.
    Droniou, Jerome
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (04): : 597 - 625
  • [8] An interpolation-free cell-centered discretization of the heterogeneous and anisotropic diffusion problems on polygonal meshes
    Miao, Shuai
    Wu, Jiming
    Yao, Yanzhong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 130 : 105 - 118
  • [9] A VIRTUAL VOLUME METHOD FOR HETEROGENEOUS AND ANISOTROPIC DIFFUSION-REACTION PROBLEMS ON GENERAL MESHES
    Coatleven, Julien
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (03): : 797 - 824
  • [10] A finite volume element scheme with a monotonicity correction for anisotropic diffusion problems on general quadrilateral meshes
    Gao, Yanni
    Yuan, Guangwei
    Wang, Shuai
    Hang, Xudeng
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 407