Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces
被引:245
|
作者:
Eymard, R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, F-77454 Marne La Vallee 2, FranceUniv Marseille, CMI, F-13453 Marseille 13, France
A symmetric discretization scheme for heterogeneous anisotropic diffusion problems on general meshes is developed and studied. The unknowns of this scheme are the values at the centre of the control volumes and at some internal interfaces that may, for instance, be chosen at the diffusion tensor discontinuities. The scheme is therefore completely cell centred if no edge unknown is kept. It is shown to be accurate for several numerical examples. The convergence of the approximate solution to the continuous solution is proved for general (possibly discontinuous) tensors and general (possibly nonconforming) meshes and with no regularity assumption on the solution. An error estimate is then deduced under suitable regularity assumptions on the solution.
机构:
Inst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaInst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China
Peng, Gang
Gao, Zhiming
论文数: 0引用数: 0
h-index: 0
机构:
Inst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R ChinaInst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China
Gao, Zhiming
Yan, Wenjing
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R ChinaInst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China
Yan, Wenjing
Feng, Xinlong
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaInst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China