An embedding approach using orthogonal matrices of the singular value decomposition for image steganography

被引:0
|
作者
Abdallah, Hanaa A. [1 ,2 ]
Amoon, Mohammed [3 ,4 ]
Hadhoud, Mohiy M. [5 ]
Shaalan, Abdalhameed A. [2 ]
Alshebeili, Saleh A. [6 ,7 ]
Abd El-Samie, Fathi E. [1 ,8 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Technol, Riyadh, Saudi Arabia
[2] Zagazig Univ, Fac Engn, Zagazig, Egypt
[3] Menoufia Univ, Fac Elect Engn, Dept Comp Sci & Engn, Menoufia 32952, Egypt
[4] King Saud Univ, Community Coll, Dept Comp Sci, Riyadh 2809511437, Saudi Arabia
[5] Menoufia Univ, Fac Comp & Informat, Shibin Al Kawm, Egypt
[6] King Saud Univ, Dept Elect Engn, Riyadh 11421, Saudi Arabia
[7] King Saud Univ, KACST TIC Radio Frequency & Photon & Soc, Riyadh 11421, Saudi Arabia
[8] Menoufia Univ, Fac Elect Engn, Dept Elect & Elect Commun Engn, Menoufia 32952, Egypt
关键词
Steganography; Data Hiding; Singular Value Decomposition; Visual Image Fidelity; DIGITAL IMAGES;
D O I
10.1007/s11042-019-7657-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper aims to reduce the embedding errors, maintain the image fidelity, and reduce the errors, when detecting the embedded messages in images. An embedding approach is proposed that depends on using the orthogonal matrices of the Singular Value Decomposition (SVD) as a vessel for embedding information instead of embedding in the singular values of the images. Three ways are suggested to reduce the embedding errors and maintain the image fidelity, when detecting the embedded message. These ways are increasing the number of columns protected without embedding, choosing the suitable block size to embed in and adjusting the singular values in order to give a high quality of the stego image. Results show that utilization of the orthogonal matrices of the SVD for information hiding can be as effective as using transform-based techniques, and it gives better results than those obtained with the Least Significant Bit (LSB) technique.
引用
收藏
页码:7175 / 7191
页数:17
相关论文
共 50 条
  • [41] An Investigation of Image Compression Using Block Singular Value Decomposition
    Jia, Yin-jie
    Xu, Peng-fei
    Pei, Xu-ming
    COMMUNICATIONS AND INFORMATION PROCESSING, PT 1, 2012, 288 : 723 - +
  • [42] An investigation into using singular value decomposition as a method of image compression
    Tian, M
    Luo, SW
    Liao, LZ
    Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 5200 - 5204
  • [43] Neural Embedding Singular Value Decomposition for Collaborative Filtering
    Huang, Tianlin
    Zhao, Rujie
    Bi, Lvqing
    Zhang, Defu
    Lu, Chao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (10) : 6021 - 6029
  • [44] SINGULAR-VALUE DECOMPOSITION AND EMBEDDING DIMENSION - COMMENT
    BROOMHEAD, DS
    JONES, R
    KING, GP
    PHYSICAL REVIEW A, 1988, 37 (12): : 5004 - 5005
  • [45] SINGULAR-VALUE DECOMPOSITION AND EMBEDDING DIMENSION - REPLY
    MEES, AI
    RAPP, PE
    PHYSICAL REVIEW A, 1988, 37 (12): : 5006 - 5006
  • [46] Generalized Orthogonal Matching Pursuit With Singular Value Decomposition
    Fu, Ting
    Zong, Zhaoyun
    Yin, Xingyao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [47] Parallel singular value decomposition of complex matrices using multidimensional CORDIC algorithms
    Hsiao, SF
    Delosme, JM
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (03) : 685 - 697
  • [48] Analysis of metabolic capabilities using singular value decomposition of extreme pathway matrices
    Price, ND
    Reed, JL
    Papin, JA
    Famili, I
    Palsson, BO
    BIOPHYSICAL JOURNAL, 2003, 84 (02) : 794 - 804
  • [49] A MODIFIED METHOD FOR SELECTING SINGULAR VALUES IN IMAGE COMPRESSION USING SINGULAR VALUE DECOMPOSITION
    Ahmed, Sahar Khalid
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2022, 17 (04): : 2556 - 2566
  • [50] Singular value decomposition for the Takagi factorization of symmetric matrices
    Chebotarev, Alexander M.
    Teretenkov, Alexander E.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 234 : 380 - 384