An embedding approach using orthogonal matrices of the singular value decomposition for image steganography

被引:0
|
作者
Abdallah, Hanaa A. [1 ,2 ]
Amoon, Mohammed [3 ,4 ]
Hadhoud, Mohiy M. [5 ]
Shaalan, Abdalhameed A. [2 ]
Alshebeili, Saleh A. [6 ,7 ]
Abd El-Samie, Fathi E. [1 ,8 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Technol, Riyadh, Saudi Arabia
[2] Zagazig Univ, Fac Engn, Zagazig, Egypt
[3] Menoufia Univ, Fac Elect Engn, Dept Comp Sci & Engn, Menoufia 32952, Egypt
[4] King Saud Univ, Community Coll, Dept Comp Sci, Riyadh 2809511437, Saudi Arabia
[5] Menoufia Univ, Fac Comp & Informat, Shibin Al Kawm, Egypt
[6] King Saud Univ, Dept Elect Engn, Riyadh 11421, Saudi Arabia
[7] King Saud Univ, KACST TIC Radio Frequency & Photon & Soc, Riyadh 11421, Saudi Arabia
[8] Menoufia Univ, Fac Elect Engn, Dept Elect & Elect Commun Engn, Menoufia 32952, Egypt
关键词
Steganography; Data Hiding; Singular Value Decomposition; Visual Image Fidelity; DIGITAL IMAGES;
D O I
10.1007/s11042-019-7657-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper aims to reduce the embedding errors, maintain the image fidelity, and reduce the errors, when detecting the embedded messages in images. An embedding approach is proposed that depends on using the orthogonal matrices of the Singular Value Decomposition (SVD) as a vessel for embedding information instead of embedding in the singular values of the images. Three ways are suggested to reduce the embedding errors and maintain the image fidelity, when detecting the embedded message. These ways are increasing the number of columns protected without embedding, choosing the suitable block size to embed in and adjusting the singular values in order to give a high quality of the stego image. Results show that utilization of the orthogonal matrices of the SVD for information hiding can be as effective as using transform-based techniques, and it gives better results than those obtained with the Least Significant Bit (LSB) technique.
引用
收藏
页码:7175 / 7191
页数:17
相关论文
共 50 条
  • [31] Local color image segmentation using singular value decomposition
    Philips, CB
    Jain, RC
    1998 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, 1998, : 148 - 153
  • [32] Image Fusion Using Higher Order Singular Value Decomposition
    Liang, Junli
    He, Yang
    Liu, Ding
    Zeng, Xianju
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (05) : 2898 - 2909
  • [33] A multidimensional image quality measure using singular value decomposition
    Shnayderman, A
    Gusev, A
    Eskicioglu, AM
    IMAGE QUALITY AND SYSTEM PERFORMANCE, 2004, 5294 : 82 - 92
  • [34] Renal Dynamic Image Compression using Singular Value Decomposition
    Chaudhary, Jagrati
    Pandey, Anil Kumar
    Sharma, Param Dev
    Patel, Chetan
    Kumar, Rakesh
    INDIAN JOURNAL OF NUCLEAR MEDICINE, 2022, 37 (04): : 343 - 349
  • [35] Image Denoising Using the Higher Order Singular Value Decomposition
    Rajwade, Ajit
    Rangarajan, Anand
    Banerjee, Arunava
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (04) : 849 - 862
  • [36] Color image watermarking scheme based on singular value decomposition of split quaternion matrices
    Wang, Gang
    Jiang, Tongsong
    Zhang, Dong
    Vasil'ev, V. I.
    JOURNAL OF THE FRANKLIN INSTITUTE, 2025, 362 (03)
  • [37] Singular value decomposition of split quaternion matrices and its applications for color image processing
    Jiang, Chuan
    Wang, Gang
    Zhang, Dong
    Guo, Zhenwei
    JOURNAL OF ELECTRONIC IMAGING, 2025, 34 (01)
  • [38] Color Image Compression Using Block Singular Value Decomposition
    Xu, Peng-fei
    Zhang, Hong-bin
    Wang, Xin-feng
    Yu, Zheng-yong
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS, PTS 1-4, 2013, 303-306 : 2122 - 2125
  • [39] A robust image watermarking scheme using singular value decomposition
    JNTU College of Engineering, ECE Department, Kakinada, India
    J. Multimedia, 2008, 1 (7-15):
  • [40] Image quality assessment using the singular value decomposition theorem
    Mansouri, Azadeh
    Aznaveh, Ahmad Mahmoudi
    Torkamani-Azar, Farah
    Jahanshahi, J. Afshar
    OPTICAL REVIEW, 2009, 16 (02) : 49 - 53