The hamiltonicity and path t-coloring of Sierpinski-like graphs

被引:15
|
作者
Xue, Bing [2 ]
Zuo, Liancui [1 ]
Li, Guojun [2 ]
机构
[1] Tianjin Normal Univ, Coll Math Sci, Tianjin 300387, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
关键词
Hamiltonicity; Path t-coloring; Vertex linear arboricity; Sierpinski graph; Matching; METRIC PROPERTIES; TOWER; CODES;
D O I
10.1016/j.dam.2012.03.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mapping phi from V(G) to {1, 2,..., t) is called a path t-coloring of a graph G if each G[phi(-1)(i)], for 1 <= i <= t, is a linear forest. The vertex linear arboricity of a graph G, denoted by vla(G), is the minimum t for which G has a path t-coloring. Graphs S[n, k] are obtained from the Sierpiriski graphs S(n. k) by contracting all edges that lie in no induced K-k. In this paper, the hamiltonicity and path t-coloring of Sierpiriski-like graphs S(n, k), S+(n, k), S++(n, k) and graphs S[n, k] are studied. In particular, it is obtained that vla(S(n, k)) = vla(S[n, k]) = inverted right perpendiculark/2inverter left perpendicular for k >= 2. Moreover, the numbers of edge disjoint Hamiltonian paths and Hamiltonian cycles in S(n, k), S+(n, k) and S++(n, k) are completely determined, respectively. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1822 / 1836
页数:15
相关论文
共 50 条
  • [31] Multiagent Evolutionary Algorithm for T-coloring Problem
    Liu, Jing
    Zhong, Weicai
    Li, Jinshu
    SIMULATED EVOLUTION AND LEARNING, PROCEEDINGS, 2008, 5361 : 289 - 298
  • [32] Heuristic methods for the T-coloring problem with sets
    Jiang, M
    RAIRO-RECHERCHE OPERATIONNELLE-OPERATIONS RESEARCH, 1998, 32 (01): : 75 - 99
  • [33] An exact algorithm for the generalized list T-coloring problem
    Rza¸zewski, P. (p.rzazewski@mini.pw.edu.pl), 1600, Discrete Mathematics and Theoretical Computer Science (16):
  • [34] FURTHER RESULTS ON T-COLORING AND FREQUENCY ASSIGNMENT PROBLEMS
    RAYCHAUDHURI, A
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (04) : 605 - 613
  • [35] An Exact Algorithm for the Generalized List T-Coloring Problem
    Junosza-Szaniawski, Konstanty
    Rzazewski, Pawel
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2014, 16 (03): : 77 - 94
  • [36] HAMILTONICITY OF TREE-LIKE GRAPHS
    MARUSIC, D
    DISCRETE MATHEMATICS, 1990, 80 (02) : 167 - 173
  • [37] Brooks-type theorem for the generalized list T-coloring
    Fiala, J
    Král, D
    Skrekovski, R
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 19 (03) : 588 - 609
  • [38] On the packing coloring of base-3 Sierpinski graphs and H-graphs
    Deng, Fei
    Shao, Zehui
    Vesel, Aleksander
    AEQUATIONES MATHEMATICAE, 2021, 95 (02) : 329 - 341
  • [39] Elastic properties of Sierpinski-like carpets: Finite-element-based simulation
    Oshmyan, VG
    Patlazhan, SA
    Timan, SA
    PHYSICAL REVIEW E, 2001, 64 (05): : 10 - 056108
  • [40] Hypergraph T-Coloring for Automatic Frequency Planning problem in Wireless LAN
    Gondran, A.
    Baala, O.
    Mabed, H.
    Caminada, A.
    2008 IEEE 19TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, 2008, : 1726 - 1730