The hamiltonicity and path t-coloring of Sierpinski-like graphs

被引:15
|
作者
Xue, Bing [2 ]
Zuo, Liancui [1 ]
Li, Guojun [2 ]
机构
[1] Tianjin Normal Univ, Coll Math Sci, Tianjin 300387, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
关键词
Hamiltonicity; Path t-coloring; Vertex linear arboricity; Sierpinski graph; Matching; METRIC PROPERTIES; TOWER; CODES;
D O I
10.1016/j.dam.2012.03.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mapping phi from V(G) to {1, 2,..., t) is called a path t-coloring of a graph G if each G[phi(-1)(i)], for 1 <= i <= t, is a linear forest. The vertex linear arboricity of a graph G, denoted by vla(G), is the minimum t for which G has a path t-coloring. Graphs S[n, k] are obtained from the Sierpiriski graphs S(n. k) by contracting all edges that lie in no induced K-k. In this paper, the hamiltonicity and path t-coloring of Sierpiriski-like graphs S(n, k), S+(n, k), S++(n, k) and graphs S[n, k] are studied. In particular, it is obtained that vla(S(n, k)) = vla(S[n, k]) = inverted right perpendiculark/2inverter left perpendicular for k >= 2. Moreover, the numbers of edge disjoint Hamiltonian paths and Hamiltonian cycles in S(n, k), S+(n, k) and S++(n, k) are completely determined, respectively. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1822 / 1836
页数:15
相关论文
共 50 条
  • [21] Coloring the Square of Sierpinski Graphs
    Xue, Bing
    Zuo, Liancui
    Li, Guojun
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1795 - 1805
  • [22] Coloring Hanoi and Sierpinski graphs
    Hinz, Andreas M.
    Parisse, Daniele
    DISCRETE MATHEMATICS, 2012, 312 (09) : 1521 - 1535
  • [23] T-Coloring of Certain Networks
    Sivagami P.
    Rajasingh I.
    Mathematics in Computer Science, 2016, 10 (2) : 239 - 248
  • [24] Intrinsic Metrics on Sierpinski-Like Triangles and Their Geometric Properties
    Saltan, Mustafa
    SYMMETRY-BASEL, 2018, 10 (06):
  • [25] Total coloring of generalized Sierpinski graphs
    Geetha, J.
    Somasundaram, K.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2015, 63 : 58 - 69
  • [26] Packing coloring of generalized Sierpinski ´ graphs
    Korže, Danilo
    Vesel, Aleksander
    Discrete Mathematics and Theoretical Computer Science, 2019, 21 (03):
  • [27] Packing coloring of generalized Sierpinski graphs
    Korze, Danilo
    Vesel, Aleksander
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (03):
  • [28] GEODESIC DISTANCES ON SIERPINSKI-LIKE SPONGES AND THEIR SKELETON NETWORKS
    Lu, Ying
    Zeng, Qingcheng
    Xu, Jiajun
    Xi, Lifeng
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (01)
  • [29] COMPLEX NETWORKS MODELED ON A KIND OF SIERPINSKI-LIKE CARPET
    Huang, Liang
    Peng, Li
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (03)
  • [30] The edge span of T-coloring on graph Cnd
    Zhao, YQ
    He, WJ
    Cao, RR
    APPLIED MATHEMATICS LETTERS, 2006, 19 (07) : 647 - 651