The hamiltonicity and path t-coloring of Sierpinski-like graphs

被引:15
|
作者
Xue, Bing [2 ]
Zuo, Liancui [1 ]
Li, Guojun [2 ]
机构
[1] Tianjin Normal Univ, Coll Math Sci, Tianjin 300387, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
关键词
Hamiltonicity; Path t-coloring; Vertex linear arboricity; Sierpinski graph; Matching; METRIC PROPERTIES; TOWER; CODES;
D O I
10.1016/j.dam.2012.03.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mapping phi from V(G) to {1, 2,..., t) is called a path t-coloring of a graph G if each G[phi(-1)(i)], for 1 <= i <= t, is a linear forest. The vertex linear arboricity of a graph G, denoted by vla(G), is the minimum t for which G has a path t-coloring. Graphs S[n, k] are obtained from the Sierpiriski graphs S(n. k) by contracting all edges that lie in no induced K-k. In this paper, the hamiltonicity and path t-coloring of Sierpiriski-like graphs S(n, k), S+(n, k), S++(n, k) and graphs S[n, k] are studied. In particular, it is obtained that vla(S(n, k)) = vla(S[n, k]) = inverted right perpendiculark/2inverter left perpendicular for k >= 2. Moreover, the numbers of edge disjoint Hamiltonian paths and Hamiltonian cycles in S(n, k), S+(n, k) and S++(n, k) are completely determined, respectively. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1822 / 1836
页数:15
相关论文
共 50 条
  • [1] Distance graphs and T-coloring
    Chang, GJ
    Liu, DDF
    Zhu, XD
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 75 (02) : 259 - 269
  • [2] Metric properties of Sierpinski-like graphs
    Luo, Chunmei
    Zuo, Liancui
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 296 : 124 - 136
  • [3] Crossing numbers of Sierpinski-like graphs
    Klavzar, S
    Mohar, B
    JOURNAL OF GRAPH THEORY, 2005, 50 (03) : 186 - 198
  • [4] On the cop number of Sierpinski-like graphs
    Cakmak, Nazlican
    Akyar, Emrah
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (04)
  • [5] T-Coloring of product graphs
    Roselin, S. Jai
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (02)
  • [6] The Hub Number of Sierpinski-Like Graphs
    Lin, Chien-Hung
    Liu, Jia-Jie
    Wang, Yue-Li
    Yen, William Chung-Kung
    THEORY OF COMPUTING SYSTEMS, 2011, 49 (03) : 588 - 600
  • [7] Distance graphs and the T-coloring problem
    Gräf, A
    DISCRETE MATHEMATICS, 1999, 196 (1-3) : 153 - 166
  • [8] {Pr}-free colorings of Sierpinski-like graphs
    Fu, Hong-Yong
    ARS COMBINATORIA, 2012, 105 : 513 - 524
  • [9] The (d, 1)-total labelling of Sierpinski-like graphs
    Deng, Xingchao
    Shao, Zhiwei
    Zhang, Huan
    Yang, Weihua
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 361 : 484 - 492
  • [10] Global Strong Defensive Alliances of Sierpinski-Like Graphs
    Lin, Chien-Hung
    Liu, Jia-Jie
    Wang, Yue-Li
    THEORY OF COMPUTING SYSTEMS, 2013, 53 (03) : 365 - 385