Quantile regression with censoring and endogeneity

被引:71
|
作者
Chernozhukov, Victor [1 ]
Fernandez-Val, Ivan [2 ]
Kowalski, Amanda E. [3 ,4 ]
机构
[1] MIT, Dept Econ, Cambridge, MA 02142 USA
[2] Boston Univ, Dept Econ, Boston, MA 02215 USA
[3] Yale Univ, Dept Econ, New Haven, CT 06520 USA
[4] NBER, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
SEMIPARAMETRIC ESTIMATION; MODELS; IDENTIFICATION; ESTIMATOR; INFERENCE; BIAS;
D O I
10.1016/j.jeconom.2014.06.017
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper we develop a new censored quantile instrumental variable (CQIV) estimator and describe its properties and computation. The CQIV estimator combines Powell (1986) censored quantile regression (CQR) to deal with censoring, with a control variable approach to incorporate endogenous regressors. The CQIV estimator is obtained in two stages that are nonadditive in the unobservables. The first stage estimates a nonadditive model with infinite dimensional parameters for the control variable, such as a quantile or distribution regression model. The second stage estimates a nonadditive censored quantile regression model for the response variable of interest, including the estimated control variable to deal with endogeneity. For computation, we extend the algorithm for CQR developed by Chernozhukov and Hong (2002) to incorporate the estimation of the control variable. We give generic regularity conditions for asymptotic normality of the CQIV estimator and for the validity of resampling methods to approximate its asymptotic distribution. We verify these conditions for quantile and distribution regression estimation of the control variable. Our analysis covers two-stage (uncensored) quantile regression with nonadditive first stage as an important special case. We illustrate the computation and applicability of the CQIV estimator with a Monte-Carlo numerical example and an empirical application on estimation of Engel curves for alcohol. (C) 2014 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:201 / 221
页数:21
相关论文
共 50 条
  • [41] Quantile regression
    Kiranmoy Das
    Martin Krzywinski
    Naomi Altman
    Nature Methods, 2019, 16 : 451 - 452
  • [42] Quantile regression
    Chernozhukov, Victor
    Galvao, Antonio F.
    He, Xuming
    Xiao, Zhijie
    JOURNAL OF ECONOMETRICS, 2019, 213 (01) : 1 - 3
  • [43] Quantile regression
    Das, Kiranmoy
    Krzywinski, Martin
    Altman, Naomi
    NATURE METHODS, 2019, 16 (06) : 451 - 452
  • [44] A MODIFIED KERNEL QUANTILE ESTIMATOR UNDER CENSORING
    LIO, YL
    PADGETT, WJ
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1988, 16 (02): : 175 - 183
  • [45] Endogeneity in logistic regression models - Response
    Ethelberg, S
    Molbak, I
    EMERGING INFECTIOUS DISEASES, 2005, 11 (03) : 504 - 505
  • [46] Threshold Regression with Endogeneity for Short Panels
    Gorgens, Tue
    Wurtz, Allan H.
    ECONOMETRICS, 2019, 7 (02):
  • [47] A closed-form estimator for quantile treatment effects with endogeneity
    Wuthrich, Kaspar
    JOURNAL OF ECONOMETRICS, 2019, 210 (02) : 219 - 235
  • [48] Quantile Regression on Quantile Ranges - A Threshold Approach
    Kuan, Chung-Ming
    Michalopoulos, Christos
    Xiao, Zhijie
    JOURNAL OF TIME SERIES ANALYSIS, 2017, 38 (01) : 99 - 119
  • [49] Quantile difference estimation with censoring indicators missing at random
    Cui-Juan Kong
    Han-Ying Liang
    Lifetime Data Analysis, 2024, 30 : 345 - 382
  • [50] Conformalized Quantile Regression
    Romano, Yaniv
    Patterson, Evan
    Candes, Emmanuel J.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32